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Figure 1: With f Sense we show that the PPG sensor of a smartwatch can be used to detect force of a grasping gesture. With the
data from 12 users, we were able to differentiate between two force levels across several types of common grasping gestures.

ABSTRACT
While most existing gestural interfaces focus on the static
posture or the dynamic action of the hand, few have investi-
gated the feasibility of using the forces that are exerted while
performing gestures. Using the photoplethysmogram (PPG)
sensor of off-the-shelf smartwatches, we show that, it is pos-
sible to recognize the force of a gesture as an independent
channel of input. Based on a user study with 12 participants,
we found that users were able to reliably produce two levels
of force across several types of common gestures. We demon-
strate a few interaction scenarios where the force is either
used as a standalone input or to complement existing input
modalities.
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1 INTRODUCTION
The way we grasp objects is incredibly rich and expressive,
and we implicitly improvise from it constantly. Much of prior
work focuses on detecting gestures using inertial measure-
ment units [10], infrared sensors [7], cameras [2], EMG [8]
and capacitance[11] sensors. Most of them focus on static
posture or the dynamic action of the hand.
We propose a new technique using an in-built photo-

plethysmogram (PPG) sensor of a smartwatch to detect force
as an independent input from grasping gestures. PPG is an
optical sensor that measures light absorption to detect heart
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rate, and has been commercially-available in some smart-
watches and fitness trackers. When we apply different force
levels while performing different hand grasps, the tissues
in our wrist contract or expand accordingly, changing the
blood concentration, which is measured by the PPG sensor.
With this operation principle, we hypothesized that there
is a correlation between the force exerted when performing
grasping gestures and readings from the PPG sensor.
Using the force of a gesture has three advantages. First,

it would increase the expressiveness of hand gestural inter-
actions, allowing the same gesture to be compounded with
different force levels for various operations. Second, by map-
ping operations to the same gestures with different forces,
we could provide an intuitive extension to the input space.
Third, as an independent input modality, force-based hand
input could be performed even with “busy hands”, i.e., when
the hand is holding onto something irrelevant to the inter-
action context, such as a bicycle handle while cycling, or a
steering wheel while driving.
In this paper, we describe the implementation of, fSense,

a method to detect gesture force, using a commercially-
available smartwatch.We collected and analyzed user-elicited
data from 12 users and were able to differentiate between
two levels of force (Soft & Hard) across several types of com-
mon gestures. We further demonstrate possible applications
supported by fSense.

2 RELATEDWORK
Hand Grasp Recognition Techniques
Previous work on wrist-worn devices to detect gestures and
objects were based on various types of signals that are de-
tectable on the wrist using sensors such as accelerometers,
gyroscopes and microphones. For example, ViBand [5] used
a bio-acoustic sensing method to identify several gestures
and objects which vibrate during operation, using an off-
the-shelf smartwatch with an overclocked accelerometer.
Serendipity [10] used an accelerometer and gyroscope of
a smartwatch to detect hand gestures. On the other hand,
SensIR [7] is a wrist-worn system which used IR transmit-
ters and emitters to detect hand gestures by measuring the
IR reflection on the wrist. Lastly, Tomo [15] sensed electri-
cal impedance around the wrist to identify gestures. Most

Figure 2: Gradients of the PPG reading of the Fist gesture,
for different force levels at different sample rates

of these techniques detect dynamic gestures or static hand
postures without force levels.
PPG-based Interaction
Since PPG is susceptible to noise frommovements of the body
or the limbs [6], it has been used to enable hand-based inter-
actions. Yoshimoto et al. [13] used a PPG sensing device on
the proximal part of the finger to detect change of blood flow
in the finger, inferring the 3D contact force exerted on the
fingertip when pressing against a surface. Zhang et al. [14]
investigated the capability of a Samsung Gear 3 smartwatch
to identify different types of gestures using its PPG sensor.
The system could detect 10 commonly-used gestures with
an accuracy of 90.55%. Zhao et al. [16] used a wrist-worn
prototype with two PPG sensors to recognize fine-grained
finger-level gestures. The prototype identified 9 gestures of
the American sign language with an average accuracy of
88.32%. Float [9] used the PPG sensor data of an off-the-shelf
smartwatch, together with an accelerometer and gyroscope
data to recognize in-air finger taps with an accuracy of 97.9%.
Our paper extends these works by detecting the force level
with PPG in a gesture-independent way.

Sensing of Force During Interaction
Perhaps the most similar work to our project is GripSense [4],
which used the gyroscope and vibration motor of smart-
phones to detect three levels of finger pressure on the touch-
screen with 95.1% accuracy. The main difference between
GripSense and our work is that it detected the force exerted
specifically on the phone, whereas our work aims to de-
tect force in an object-independent and gesture-independent
way.

3 fSENSE
f Sense system was implemented using an off-the-shelf Sam-
sung Galaxy Gear 3 Frontier smartwatch [3], which runs on
the Tizen 3.0.0.1 operating system. During the pilot study we
compared 3 different sample rates with the fist gesture, while
performing three different force levels along with No-Action.
Based on the analysis (Figure 2), we concluded that 25Hz
is the most stable and less noisy sample rate to be used. To
collect PPG data from the smartwatch, we created a Samsung
Wear service application with Tizen version 2.3.2. Data was
sent over Wi-Fi to a desktop Java application for storage and
processing.

4 EVALUATION
Study
The aim of our experiment was to evaluate f Sense system’s
ability to detect different force levels of daily grasping actions.
Specifically, we examined 3 user-elicited force levels: Soft,
Medium and Hard. We also collected PPG data when the
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Figure 3: Example application scenarios (from left to right): a) taking “selfies”, b) interactions using digital stylus, c) answering
calls while driving, d) answering calls with “busy hands”, and e) combined with existing motion sensors

participant was not performing any action in a static gesture
position (“No-Action”) as the baseline.

Gesture Set: 14 gestures were used in the experiment (Fig-
ure 1), 10 of them from the studies by Bullock et al. [1] and 3
gestures (Fist, Pinch and Thumb-Tap) fromWen et al. [10]. We
added theWatch-Tap gesture, which is a common interaction
with smartwatches. Participants were allowed to determine
the duration and force level to apply for each gesture. For Soft
and Hard levels, participants were required to perform ges-
tures with the softest and hardest force they could produce
respectively, while the Medium level is in between.

Participants: Twelve healthy, right-handed participants (7
males, 5 females) between 24 and 32 years of age (M = 28.1,
SD = 2.7) took part in the study.

Procedure: Before the experiment started, participants were
instructed to try out all the gestures to gain familiarity, while
wearing the smartwatch on their dominant hand. Each par-
ticipant performed three blocks of 56 trials each (14 gestures
with 3 force levels and the No-Action state). The order of
trials in each block was randomized. We collected a total of
168 samples (56 trials × 3 blocks) for every participant. Each
trial took approximately one to two seconds to complete and,
with the breaks, a session lasted around 25 minutes.

Table 1: Accuracy comparison of Logistic, Random
Forest and SVM with different force level combina-
tions (H:Hard, M:Medium and S:Soft)

MLR SVM RF MLR SVM RF MLR SVM RF
Accuracy % 42.3 38.7 46.3 67.4 67.4 71.7 67.2 67 69
RMSE 0.4667 0.5209 0.4571 0.4588 0.5705 0.4451 0.4657 0.5746 0.4515

Method
H-M-S HM-S H-MS

Figure 4: Accuracy for each participant using RF with differ-
ent force-level combinations (H:Hard, M:Medium and S:Soft)

Data Analysis
Pre-Processing and Feature Extraction: By analyzing the length
distribution of the data, we standardized the length per ac-
tion to be 43 samples. Next, we smoothed the data with a
moving average filter (window size 5), followed by calcu-
lating the gradient. The gradient time series was then used
to calculate the statistics as features: mean, SD, min, max,
median, skewness, kurtosis and RMS in a moving window
of size 20 with 50% overlap.

Classification Algorithms: We compared three algorithms:
Support Vector Machine (SVM), Multinomial Logistic Regres-
sion (MLR) and Random Forest (RF) for the classification task.
We used the WEKA software [12] to test the machine learn-
ing algorithms with default parameters and 10-fold cross
validation was used to test the accuracy.

Results
Force Level Classification: From the three algorithms: SVM,
MLR and RF, we observed that the recognition accuracy
across users was very low, most likely because all force lev-
els were user-elicited, with large differences between users.
We also combined the Medium force level with Hard or Soft
levels to see how the accuracy varied. Based on the accuracies
shown in Table 1, we selected RF as our classification algo-
rithm for its higher accuracy and lowest root mean squared
error (RMSE) compared to SVM and MLR.

Force Levels vs No-Action: An important requirement of f Sense
is the ability to recognize between specific force levels and
No-Action. For that analysis, we used 42 randomized data
samples from the three force level data, and 42 samples of
No-Action data from each user and the accuracy of RF was
92.1% for all users combined.

Per-User Classification: Per-user training resulted in higher
accuracy as shown in Figure 4. The key observation from
this analysis is that the Medium force level is not easily dis-
tinguishable. This could be due to the user-elicited Medium
force level being too similar to either Soft or Hard for differ-
ent users. The maximum number of force levels that can be
reliably classified were two (Soft and Hard levels), except for
the Medium level.
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5 APPLICATION SCENARIOS
Object Grasping-Based Interactions: f Sense system would
be beneficial when used in combination with objects and
devices in daily life. One scenario is in taking “selfies”. One
hand would hold the smartphone, while the other hand, with
the smartwatch attached, would perform a soft Thumb-Tap
to take the picture (Figure 3a). This avoids having to reach
for the on-screen “capture” button with a finger and renders
the shutter timer obsolete. Another scenario is to use force
as a mode switch for a digital stylus (Figure 3b). When proof-
reading or editing a digital document, a soft grasp of the
stylus, while selecting words in the document, would high-
light those words. A hard grasp would strikeout the words
instead.

Quick Response Interactions: Our system could be used to
enable quick responses to incoming calls or notifications,
independent of the object the user is holding (i.e., with a
“busy” hand) or if the user is not holding anything at all.
An example would be: a user could reject or answer a call
while driving or holding groceries in both hands (Figure 3c,
d). A soft squeeze to answer and a hard squeeze to reject.
Alternatively, the user could scroll through options for auto-
replies using soft squeezes, and select the option with a hard
squeeze.

Combination with Existing Gestural Interactions: f Sense could
be combined with existing gestural interactions, especially
when using inertial sensors (accelerometers and gyroscopes)
which are also available in most smartwatches (Figure 3e). A
soft, free-hand squeeze could activate a virtual radial menu
(in the radius of your forearm). Pivoting your forearm scrolls
between the menu items and a hard squeeze selects the cur-
rent menu item.

6 LIMITATIONS AND FUTUREWORK
Force Level Detection: With our current implementation,
per-user training gives the best results. However, the max-
imum number of distinguishable force levels is 3, includ-
ing Soft, Hard, and No-Action. We believe that performing
Medium level force was intrinsically ambiguous for partic-
ipants, mainly due to the lack of any real-time feedback.
Also, multiple fine-grained force levels were not reliably dis-
tinguishable across users, but using it as a binary switch
(No-Action vs. force) is reliable.

Expanding Grasping and Activity Testing Set: To create amore
robust system, we need to consider expanding the range of
grasping actions used. We also tested our approach in a lab
environment. To test the reliability of our system in-the-wild,
we need to test it under different scenarios, such as when the
person is performing another activity like running, cycling
and driving.

Gesture Data Collection Method and User Feedback: In our
user study, we asked users to control their own force levels
and the duration to perform the gesture. However, future
studies would need to ensure more controlled conditions
by defining a time limit for performing grasps, providing
real-time visual or vibrotactile feedback of the force level
generated, as well as recommended force level ranges, where
these force levels can be obtained using a Fore Sensing Re-
sistor.

Limitations of PPG Sensors: PPG sensors consume more
power than the inertial sensors in the smartwatch. Hence,
it is not advisable to keep the PPG sensor running continu-
ously. Future implementations would require a robust and
easy way to initialize the PPG sensor when needed, such
as using a special gesture captured by the inertial sensors
as the delimiter of force-based interaction. Future applica-
tions could also use context information, such as the users’
calendar events (busy vs. free), or the users’ activities (run-
ning, driving vs. in an office) to decide whether to enable
force-based interaction in addition to conventional ways of
interaction.

7 CONCLUSION
In this paper, we explored the feasibility of using the PPG
sensor of off-the-shelf smartwatches to detect different force
levels exerted by the hand when performing different ges-
tures. When running across users, our method is able to
reliably detect whether a gesture is performed with extra
force, and differentiates between two levels of the extra force.
We showed several applications which can benefit from PPG-
based force detection. Our system potentially enhances the
expressiveness of hand gesture interactions and unlocks a
new dimension of force for interactions using smartwatches.
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