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ABSTRACT
Currently, smartwatches are equipped with Photoplethysmography
(PPG) sensors tomeasure Heart Rate (HR) andHeart Rate Variability
(HRV). However, PPG sensors consume considerably high energy,
making it impractical to monitor HR & HRV continuously for an
extended period. Utilising low power accelerometers to estimate HR
has been broadly discussed in previous decades. Inspired by prior
work, we introduce CompRate, an alternative method to measure
HR continuously for an extended period in low-intensity physical
activities. CompRate model calibrated for individual users only has
an average performance of Root Mean Squared Error (RMSE) 1.58
Beats Per Minute (BPM). Further, CompRate used 3.75 times less en-
ergy compared to the built-in PPG sensor. We also demonstrate that
CompRate model can be extended to predict HRV. We will demon-
strate CompRate in several application scenarios: self-awareness
of fatigue and just-in-time interruption while driving; enabling
teachers to be aware of students’ mental effort during a learning
activity; and the broadcasting of the location of live victims in a
disaster situation.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; Interactive systems and tools.

KEYWORDS
Heart Rate, Heart Rate Variability, Accelerometer, Low Power, In-
ferring Stress, Photoplethysmography
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1 INTRODUCTION
Awareness of physiological parameters in daily life is vital for health
and well-being. Among the physiological parameters, Heart Rate
(HR) & Heart Rate Variability (HRV) are considered as important
measures. Other than providing direct indicators of heart function-
ality, these parameters can be used to infer stress [Kim et al. 2018]
and other pathologies, such as myocardial infarction [Buchanan
et al. 1993] and diabetic neuropathy [Chen et al. 2015]. HR is defined
as the number of heart beats per minute, and HRV is the variation
in the time interval between consecutive heartbeats.

Wearables, such as smartwatches, provide a convenient way
to monitor these parameters. The common HR & HRV measur-
ing mechanism in smartwatches is based on photoplethysmogra-
phy (PPG), which identifies the blood volume pulse seen in micro-
vascular tissues [Challoner and Ramsay 1974]. However, PPG sen-
sors are only available in high-end wearables. These sensors also
consume considerably large amounts of power, making the contin-
uous reading of physiological signs impractical. Building on ballis-
tocardiography (BCG) [Baker Jr et al. 1950; Starr 1946], Hernandez
et al. [2015], and Haescher et al. [2015], introduced a new approach
which estimates heart pulse using the accelerometer and the gyro-
scope of a wristwatch. Their work mainly focused on measuring
HR in motionless resting conditions, such as sleeping, sitting down,
and standing up. Recently, McConville et al. [2018] explored long-
term HR estimation of patients recovering from heart interventions
using accelerometer data from a wristwatch.

Inspired by prior work, we developed a model, CompRate, that
estimates HR & HRV using only accelerometer data with a lower
root mean squared error (RMSE) and potentially compatible with
any smartwatch. The CompRate model was trained with data ob-
tained from an E4 wristband 1 that provided ground truth PPG data,
as well as accelerometer data. The model was evaluated in an office
environment with 12 participants and resulted in a lower RMSE

1https://www.empatica.com/research/e4/
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compared to other modern accelerometer based approaches [Her-
nandez et al. 2015; McConville et al. 2018].

The CompRate model was then implemented in a regular smart-
watch (Samsung Gear Live), to which we evaluated the power
consumption, while continuously monitoring the HR. CompRate
used 3.75 times less energy compared to the built-in PPG sensor.
CompRate enables a wide range of applications, and we demon-
strate this with three proof-of-concept application scenarios that
leveraged on low power HR & HRV measuring: self-awareness of
fatigue and just-in-time interruption while driving; enabling teach-
ers to be aware of students’ mental effort during a learning activity;
and the broadcasting of a survivors status in a disaster situation.

The main contributions of this paper are:

• Development of an algorithm that estimates HR using ac-
celerometer data. The model uses only accelerometer data,
consuming less energy compared to conventional PPG, demon-
strating suitability in the continuous HR monitoring over a
long period.

• Extension of the HR estimation model building method to
develop a model to estimate HRV.

• Implementation of three application scenarios (self-awareness,
third-party awareness and broadcasting) to demonstrate the
wide applicability of our model.

2 RELATEDWORK
The current gold standard of heart rate measurement technologies
is electrocardiography (ECG) and photoplethysmography (PPG).
These two technologies are clinically used for measuring heart rate
because of their high accuracy. ECG needs electrodes attached to
the body [López et al. 2010; Luprano et al. 2006], while the PPG
device is usually a finger-worn clip [Mundt et al. 2005; O’Donovan
et al. 2009; Oliver and Flores-Mangas 2006; Shnayder et al. 2005] or
a wrist-worn device [Luprano et al. 2006]. Recently, the majority of
smartwatches have adapted this technology to monitor heart rate.
However, PPG requires a considerably higher power consumption
compared to other electronics of a smartwatch. For instance, Mc-
Conville et al. claim that a PPG sensor of a smartwatch typically
consumes up to 5000 times the power of an accelerometer used in a
smartwatch [Elsts et al. 2018]. Therefore, using the accelerometer to
sense the body’s vital signs could be ideal for wearable technology
in terms of battery life.

Ballistocardiography (BCG) is a non-invasive physiological mea-
surement method that estimates a person’s heart rate by capturing
subtle body motions through shifts in the blood’s mass in blood
vessels when the heart pumps [Giovangrandi et al. 2011; Starr et al.
1939]. In BCG, these subtle motions are non-invasively captured by
adding motion sensors to the body, usually near the heart [Bieber
et al. 2013; Dinh 2011; Kwon et al. 2011]. Apart from adding sensors
to the body, embedding motion sensors to everyday objects such as
a weighing scale [Inan et al. 2009; Wiard et al. 2011] or a chair [Pin-
heiro et al. 2010] have also been explored. Also, in another study,
researchers showed that extracting HR is possible by using the sen-
sors inside a head-worn device, such as a Google Glass [Hernandez
et al. 2014].

Motivated by the approaches related to BCG, previous researchers
explored heart rate estimations usingwrist-wornmotion sensors for

Table 1: Performance of ML models
ML Approach Parameters RMSE (BPM)

Linear Regression method: qr 6.59

Neural Network

Quantile Regression

Random Forest

SVM

XGBoost

hidden: (6, 12, 3), threshold: 0.01,
learning_rate: 0.01,  algorithm: rprop+ 

tau: 0.5, method: br

3.79

6.82

ntrees: 500, nodesize: 5

type: eps, kernel: sigmoid, epsilon: 0.1,
gamma: 0.16

eta: 0.3, max_depth: 6, nrounds: 128

1.76

6.68

2.23

their convenience and wearability. For instance, BioWatch [Hernan-
dez et al. 2015], estimated heart rate by utilising the accelerometer
and gyroscope of a smartwatch. In their work, a controlled lab-
oratory study demonstrated accurate heart rate measurement in
3 different resting positions (standing up, sitting down and lying
down), without any motion, under relaxed and aroused conditions
with a mean absolute error of 1.27 (STD 3.37) beats per minute.
In a similar study, Haescher et al. [Haescher et al. 2015] explored
heart rate measurements via wrist-worn accelerometers in motion-
less conditions. Furthermore, they compared their accuracy with
commonly applied technologies and found that heart rate detec-
tion was not significantly different to current gold standards. In
another study, researchers demonstrated a method which can up-
grade any smartwatch to enable sensing heart rate [Haescher et al.
2016]. All these studies mainly focused on estimating HR in mo-
tionless conditions such as standing up, sitting down, sleeping or
lying down. In a very recent study, researchers explored online
heart rate and an HRV prediction method using the accelerome-
ter of a wrist-worn wearable, which uses PPG heart rate sensor
infrequently [McConville et al. 2018]. In their study, they asked 3
patients, who were recovering from heart interventions, to wear a
smartwatch and evaluated their method using 4 weeks of in situ
data. Their algorithm achieved average RMSE of 6.10 while 20%
of data were obtained from PPG sensor. Despite advancements in
measurement technologies, none of these works focused on explor-
ing application domains of low power heart rate monitoring, which
we will demonstrate in addition to our CompRate algorithm.

3 COMPRATE
CompRate was primarily developed as a low-power solution to
estimate HR in low-intensity physical activities, namely when a
person is working in an office, in a classroom/lecture, or while
driving. Similar to BCG, CompRate captures subtle motions of the
body due to shifts in blood mass in the blood vessels by using
an accelerometer of a wrist-worn device and estimates HR with
a pre-trained model. We developed the CompRate model with a
classic machine learning approach using the readings of Empatica
E4 wristband. We tested our model with another smartwatch (Sam-
sung Gear Live). We describe the data collection, pre-processing,
feature extraction, training and testing of the CompRate model in
the following sections.

3.1 Model Development: Data Collection
• Participants:
12 healthy participants, 4 female and 8 male aged between
24-31 (Mean = 27.46, SD = 2.57) were recruited for the study.



CompRate: Power Efficient Heart Rate and Heart Rate Variability Monitoring on Smart Wearables VRST ’19, November 12–15, 2019, Parramatta, NSW, Australia

Empatica
E4

Smartwatch

Record Sensor Data
(Ground Truth : PPG

Training: Accelerometer)

Feature
Extraction

Record Sensor Data
(Accelerometer)

Feature
Extraction

Training Data

Testing Data

Split Data

Train
Models

CompRate
Models

Personalized

Genaralized

Testing Results

Real-time
Prediction HR

IBI

HRV
Calculation

Infer
Stress
Levels

Disaster
Rescue

Mental Effort
in

Classroom

Driver
Assistance

App

Figure 1: The figure shows the block diagram of steps we followed in developing CompRate models.

Since our goal is to estimate HR in low-intensity physical
activities, we recruited participants from an office environ-
ment to collect our data. All participants are researchers at
a university.

• Apparatus:
We used Empatica E4 wristbands to collect ground truth data,
given its validation in prior work [McCarthy et al. 2016]. The
wristband was connected to a Samsung Galaxy A8 mobile
phone via Bluetooth. A custom built Android application
inside a mobile phone collected all the data. To validate our
model with an external device, we used a Samsung Gear Live
smartwatch.

• Task and Procedures:
Participants were asked to wear an Empatica E4 wristband
on their non-dominant hand for one full day (from 9 am to
next day 9 am). During this day, they had to complete their
typical daily tasks such as, working in front of a computer,
soldering, walking, cooking, sleeping, etc.

• Data Collection:
Inter beat interval (IBI) was recorded as the ground truth
data from a PPG sensor of the E4 wristband with a resolution
of 1/64 seconds. Accelerometer data was collected with the
built-in 3-axis accelerometer of the E4 wristband with a
frequency of 32Hz. The accelerometer values had an eight-
bit resolution and full-scale range of ±2д. Each individual
data set was partitioned into training and testing data sets.
Training data sets were then used to train the models, as
described in the subsection below.

3.2 Model Development: Training
In the preprocessing stage, each axis of the training accelerometer
data was normalised using the Z-score within a moving window to
give all axes the same relevance [Hernandez et al. 2015]. Incomplete
data points were omitted as part of the data cleaning process. HR
values were derived using recorded IBI values (HR = 60/IBI ). HR
values were smoothed with a moving average because they were
calculated for each inter-beat-interval values. We tried smoothing
window sizes in the range of 5 - 120 seconds and found that 40
seconds was the optimal window size for smoothing.

Themedian and standard deviation were extracted as features for
each axis of a window of an arbitrary period of 60 seconds, resulting
in 6 features per window. Using these six features and the heart
rate derived from the IBI using the E4 data as the ground truth, we
identified the most suitable algorithm among six machine learning
algorithms: SVM, Random Forest, Linear Regression Model, Neural
Network, Quantile Regression Model and XGBoost. From these
algorithms, Random Forest demonstrated the lowest RMSE (Root
Mean Squared Error) as shown in the Table 1. Hence, we selected
the Random Forest as our preferred machine learning algorithm to
implement in the CompRate model.

To identify the optimum feature window size, we tested the
performance of the model over different sizes, such as 5s, 10s, 15s,
and up to 120s. We confirmed that an 80-second window is the
smallest window size that results in the lowest prediction error.

We trained 12 personalised models only using each participant’s
data. To examine the generalisability across users, we used the
leave-one-out method, where the data of 11 participants are used
to train a model to predict the left-out participant’s HR. Also, to
compare the performance of prediction results, we generated a
baseline predictor, which always output the mean HR value of the
corresponding training data set. A summary of the steps of model
training is seen in Figure 1.

Table 2: Performance of HR prediction models against the
baseline models.

Model Average	RMSE	(BPM)
Best	Performing	Model

RMSE	(BPM)

Personalised	CompRate

Personalised	Baseline

Generalised	CompRate

Generalised	Baseline

1.58	(SD=	0.58) 0.88

6.78	(SD=	2.81)

10.85	(SD=	4.67)

14.13	(SD=	6.28)

2.29

4.41

6.25

3.3 Model Development: Testing
Trained personalised models were used to predict HR values of the
testing dataset of each participant. To examine the generalisabil-
ity of the method, models were trained using the leave-one-out
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method to predict HR values of the corresponding left-out person.
A comparison of the predicted and expected HR values for 12 per-
sonalised models and generalised models are visualised in Figure 2.
During the data collection session, we allow participants to engage
in their daily activities. The variation of HR over time depending
on physical activity level and psychological state is also visible in
the same figure.

Along with personalised and generalised CompRate model pre-
dictions, we used baseline models to predict the baselines. A sum-
mary of the HR prediction results against baseline models is tabu-
lated under the Table 2

3.4 Model Validation with an External Device
After a week, to validate the derived models with an external device,
all the participants were again asked to wear both Empatica E4 and
the Samsung Gear Live smartwatch on their non-dominant hand
for one full day, following the same procedure as before. The partic-
ipants wore the Samsung watch in a position approximately similar
to that of the previous session. The E4 was used to collect validation
HR values only, while the CompRate model was implemented on
the Samsung Gear Live smartwatch.

We fed Samsung Gear Live smartwatch accelerometer data di-
rectly to the personalisedmodels of each participant that we derived
earlier for the E4 device. Furthermore, we calculated the RMSE for
each participant for the generalised and personalised models in
both E4 and the Samsung Gear Live smartwatch (Figure 3).

Also, a one-way ANOVA revealed a main effect between the
RMSEs of the estimated heart rate values by using personalised and
generalised models in the E4 and Samsung Gear Live smartwatch.
(F3,44=23.80; p < .01). A Tukey’s HSD post-hoc analysis revealed
that RMSEs of the estimated heart rates are significantly better
for personalised models than generalised models for both E4 and
the Samsung Gear Live smartwatch. However, regardless of device,
there was no significant difference between RMSEs of HR values
estimated from either personalised models or generalised models
(See Figure 3).

According to the above results, average RMSEs of personalised
(M= 1.58, SD = 0.58) models were better than other machine learn-
ing approaches found in recent literature [McConville et al. 2018].
Furthermore, we developed a generalised model, which had an
average RMSE of 10.85 (SD = 4.67). Also, we found that estimated
heart rate values in the Samsung Gear Live smartwatch were not
significantly different to estimated heart rate values in E4 when
using the same generalised and personalised models. This shows
that the models are possibly compatible with other smartwatches.
Furthermore, there was a significant difference between the values
estimated from generalised models and personalised models. How-
ever, well-trained personalised devices are sufficient for most of
the applications, since a smartwatch is a personal device.

3.5 Power Consumption Analysis
Power consumption of CompRate against PPG sensor was inves-
tigated using Samsung Gear Live smartwatch while continuously
monitoring the heart rate. The device had a 300mAh battery and
operated with Android Wear OS. Information extracted from An-
droid debug reports were used to calculate power consumption data.

USB debugging mode of the Android watch was enabled. Before
each data gathering session, debug reports of the smartwatch was
reset using Android Debug Bridge (ADB) 2. The watch was set to
continue monitoring HR monitoring mode through a custom build
application. A participant was requested to wear the smartwatch
for one hour. A debug report was later extracted using the ADB.
Above steps were repeated for 20 sessions (10 sessions using PPG;
10 sessions using CompRate). Retrieved debug reports were anal-
ysed using Battery Historian tool3 which is an opensource Android
log analysing tool. We extracted the available energy capacity (out
of 300mAh) of the smartwatch before and after each session. Energy
utilisation was calculated per session. The results indicated that
the device consumes 13.94 mAh power per hour with PPG, though
CompRate-based approaches only consumed 3.71 mAh per hour. A
student t-test revealed that power consumption is significantly less
than PPG based approach (T(18) = 7.6565, p<0.005)

3.6 Extension of the Method for HRV
The fundamental method was built to predict HR using accelerom-
eter readings. The possibility of extending the original method to
predict HRV was also tested. In order to calculate HRV, the time
intervals between consecutive beats are required. Therefore, modi-
fications were performed according to the initial method to predict
IBI values instead of HR values. The following summarises changes
to the initial method,

• In the preprocessing stage, we omitted IBI to HR conversion
and data smoothing steps. This step was taken to increase
the resolution of data that is required for IBI prediction.

• Since the initial set of features did not have entropy to pro-
vide sufficient accuracy, following new features per each x,y
and z were introduced. The mean of absolute values, the
number of zero crossings, skewness, kurtosis, median and
standard deviation after z-score normalisation, skewness,
kurtosis, mean, standard deviation after log scale normali-
sation. Z score normalisation was used to omit the effect of
gravitational force, while the log normalisation was intro-
duced to reduce effect of higher accelerations.

• The feature window size was recalculated following the same
procedure of the original feature window detection stage.
We discovered that the optimal feature window size for IBI
prediction was 120 seconds.

Table 3: Performance of IBI prediction models against the
baseline models.

Model Average	RMSE	(ms)
Best	Performing	Model

RMSE	(ms)

Personalised	CompRate

Personalised	Baseline

Generalised	CompRate

Generalised	Baseline

61.39	(SD=	16.03) 41.58

107.31	(SD=	43.80)

116.69	(SD=	35.80)

189.59	(SD=	70.01)

52.73

76.66

137.31

The final steps of feature extraction and splitting datasets were
conducted based on the previous HR prediction method. Twelve
2https://developer.android.com/studio/command-line/adb
3https://github.com/google/battery-historian

https://developer.android.com/studio/command-line/adb
https://github.com/google/battery-historian
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Figure 2: The figure compares the actual heart rate (red), the predicted heart rates from personalised models (blue), and the
generalised (green) models of each participant.

personalised IBI prediction models were trained along with twelve
baseline models. Personalised IBI prediction models were evaluated
with the corresponding testing datasets. Also, the generalisability
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Figure 3: The figure compares the RMSEs of estimated HR
values by using personalised and generalised models. The
models were run in both E4 and the Samsung Gear Live
smartwatch.

of the IBI predictor was assessed using the leave-one-out method.
Results of the evaluation are presented in the Table 3.

We observed that the personalised IBI prediction models had 1.75
times better RMSE compared to the baseline while the generalised
model outperformed the baseline by 1.62 times. Furthermore, we
observed an error rate of less than 1.90 times in the personalised
predictor compared to the generalised predictor.

4 APPLICATIONS OF COMPRATE
The low power consuming heart rate monitoring capability of Com-
pRate opens up a wide range of applications. Fundamentally, Com-
pRate enables HR & HRV measuring abilities on affordable devices,
which do not contain a PPG or ECG sensor.

Other than the trivial application, we identified 3 application
areas in which CompRate may have the most substantial impact: 1)
Self-awareness of fatigue and stress levels during attention-critical
tasks such as driving; 2) Third-party awareness about cognitive
load such as during a learning activity; and 3) Broadcasting of vital
data in a rescue situation such as during a natural disaster.

Below, we show example applications for each category and
initial user feedback.
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4.1 Self-Awareness of Fatigue for Just in-time
Interruption while Driving

In the last few decades, researchers have shown that HRV can be
used as an indicator of stress levels [Kim et al. 2018; Taelman et al.
2009].

StressHacker is a recent study which explored stress monitor-
ing in the wild by using smartwatches [Hao et al. 2017]. In this
work, they have utilised an inbuilt PPG sensor to measure HRV and
demonstrated that they can infer the stress dynamics of a person
fairly accurately. However, as previously mentioned, PPG sensors
are not power efficient and also unavailable in every smartwatch.
In fact, HRV measures could potentially be used to predict whether
an individual is at an increased risk of attention failure because of
sleepiness [Chua et al. 2012; Healey et al. 2005; Michail et al. 2008].
Continuous monitoring of HRV will help avoid harmful situations,
such as falling asleep while driving for a long duration and over
long distances.

To address this, we leveraged on the CompRate model and devel-
oped a smartwatch application which provides vibration feedback
on the wrist and auditory feedback when a driver is at the risk of
attention failure. Also, the system suggests the driver to take a rest,
if attention failure is identified based on LF/HF elevation compared
to baseline [Chua et al. 2012]. We envision that the same informa-
tion can be used to shift the driving control between manual and
automated driving depending on the driver’s condition.

To get initial insights, we asked 3 male drivers (26, 31, 28 years
old) to drive a car on a road with low traffic for half an hour while
wearing a smartwatch with our application (see figure 4). The appli-
cation provided feedback about HRV every five minutes. Although
the envision system provides feedback whenever the user experi-
ences attention deprivation, we provide HRV feedback every five
minutes in the pilot study to understand the applicability of the
feedback system. Since our subjects were not sleep deprived, we
did not see much LF/HF variance. All the participants appreciated
the importance of an application that increased self-awareness of
fatigue when driving. Software architecture of the application is
shown in the Figure 5.

Figure 4: Self-awareness app for drivers: Samsung Gear Live
smartwatch with CompRate model provides feedback when
the driver needs to rest. To get initial feedback,we developed
an app which provided HRV feedback every 5 minutes.

Android DataAPI
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Connector
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Accelerometer
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Android DataAPI

WatchController

UI Layer

Smartwatch Service
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Feature
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Cognitive
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Mobile Phone Application

Figure 5: System architecture diagram of the self-awareness
application for drivers

4.2 Enabling Teachers to Become Aware of
Students’ Learning Engagement

Recent work found that low-frequency (LF) to high-frequency (HF)
ratio of HRV might be an indicator to identify the cognitive load
and used to identify mental attentiveness towards a task [Sridhar
et al. 2018]. Motivated by prior work, we implemented an example
application which estimated the cognitive load during a lesson
in a classroom using a simple accelerometer wristband. Also, we
implemented this in such a way that only the teacher will receive
feedback, not the other students. This was important to avoid self
de-motivation among students.

We used an off-the-shelf accelerometer break out MPU9250 from
SparkFun4 to build our model. We then used a low-power 1.4-inch
128×128 TFT LCD display without front polariser. The IMU and the
LCD display was connected to Adafruit pro trinket which has an AT-
mega328P microcontroller. The microcontroller was programmed
to run our model. All these devices were embedded into a wristband
like device as shown in Figure 7. When a student wears the wrist-
band, the device will change the colour of the display according
to the estimated cognitive load. This change is not visible to the
naked eyes of the students.

Since the LCD does not have a front polariser, the content of
the display is only visible through polarised filters. We developed a
separate pair of glasses with polarising filters for the teacher (see
Figure 7). In this way, a teacher can identify the student’s cognitive
load and use this information to provide a better learning experience.
The main components of our application are distributed according
to the Figure 6.

To gain initial insights on our application, we gave the system
to 3 primary school teachers. We demonstrated its functionality
and asked a few questions about: value of understanding student
engagement, current methods they are using, advantages of the pro-
posed method over current methods, and additional requirements.
4https://www.sparkfun.com/products/13762
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Figure 6: System architecture diagram of the student engage-
ment monitoring system

https://www.sparkfun.com/products/13762
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Figure 7: Enabling teachers to be aware of the students’
learning engagement: Customwristband for students which
has a display without a polariser. A teacher wears a special
polarised glass to get feedback about students stress levels.
According to the teachers, they typically use a self reportingmethod
to identify the stress levels of students during a teaching lesson.
Since it is purely based on students’ self-reporting, it is difficult to
rely on this information to improve learning methods. Therefore,
all the teachers highly appreciated the system, as it provided them
with real-time, objective indication of the cognitive load. They also
mentioned that limiting the visualisation of the cognitive load to
teachers was highly important to avoid de-motivating students.
Furthermore, the teachers suggested that the device should provide
some form of a self feedback to students as well.

4.3 Broadcasting of Vital Data in a Disaster
Situation

Low power heart rate sensing in vital situations is important, es-
pecially in situations with limited power. In such a situation, a
smartwatch with CompRate will help broadcast heart rate to rele-
vant people to get immediate attention. For instance, disasters such
as earthquakes, tsunami, and hurricanes cause numerous casualties.
The major cause of such casualties in urban areas is the collapse
of buildings [Coburn et al. 1992], trapping people for many days
before rescue teams are able to locate them.

Figure 8: Broadcasting of vital data in a disaster situation:
Figure shows a screen shot of the disaster rescue applica-
tion. The heart icon indicates the locations of the victims
and the colour scheme shows the condition of the HR; the
blue colour icon shows the number of people in close by
proximity.
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Figure 9: System architecture diagram of the disaster rescue
application system

Some of the current methods used in rescue missions are ad-hoc
searches, where the search for survivors is performed by scanning
vital signs, such as the heartbeat and breath sounds [Landau 2015],
and thermal scanning. Due to a limited range of these sensing tech-
nologies, these scans usually require rescue teams or Unmanned
Aerial Vehicles (UAVs) to operate in close proximity of the disas-
ter, jeopardising the safety of the rescuers and the functioning of
the UAVs. Remote and real-time information like the survivors’
locations and the vital signs of survivors, would facilitate better co-
ordination and focus in rescue missions. A device which broadcasts
heart rate to a central application could be beneficial for rescue
teams to identify live victims and also victims who have a greater
chance of survival and require immediate attention.

To accomplish this, we developed a smartwatch application
which estimates HR and broadcasts it to a central application (Fig-
ure 8). In the pilot application, we defined HR above 60 BPM as
healthy HR, 0 to 59 BPM as HR drops, and 0 BPM as zero HR. Soft-
ware architecture of the system is visualised in the Figure 9. The
system has four main components: application on smart watch to
capture accelerometer data, application on mobile phone to predict
the HR using accelerometer data, web application which stores the
individual HR data, and a website that visualise the locations and
HR values of the users.

5 LIMITATIONS & FUTURE DIRECTIONS
• Cross Validation with Only One Device:
Currently, we validated our model with only one device, a
Samsung Gear Live smartwatch. For a better understanding
of the accuracy of our model in the future, we aim to test
our model with a few other popular smartwatches such as
Pebble, Apple Watch, Xiaomi Amazfit, etc.

• Small Number of Users:
For the model training, we had 12 participants and when
we removed one participant for generalised models, only 11
participants remained for model training. Although this is a
considerable amount of participants for a generalised model,
more participants will generate a better model to obtain
higher accuracy. Cross device validation was also done with
12 participants. Having more participants will help gain a
better understanding of the accuracy of our model.

• More Studies of the Application Scenarios:
The demonstrated application scenarios provided us with
preliminary insights for future developments. We will con-
duct more in-depth investigations of the usability of those
applications.

• Estimation of HR while Performing High Intensity Activities:
The current model was developed to estimate the heart rate,
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only while the user performs low-intensity activities. In
high-intensity activities, such as walking, jogging, running,
the IMU signals generated from micro-movements can be
hidden by higher amplitudes of relatively lower frequency
components. For example, with jogging, the heart rate will
typically exceed 100 BPM. Therefore, micro-movements will
also generate a frequency closer to 100 cycles per minute.
However, IMU signals generated by hand movements will
be relatively lower than this frequency. Analysing an FFT
and filtering out these low-frequency components will help
to extract the heart rate values.

6 CONCLUSION
This paper presents CompRate, a low power solution to estimate HR
for an extended period while the user is engaged in low-intensity
activities. The experiment results indicate that accelerometer-based
HR prediction has comparable accuracy compared to PPG-based
approaches. Furthermore, the personalised prediction models are
easily generalisable across people and hardware. Also, using an
accelerometer instead of a PPG sensor to detect HR improves the
battery life expectation of a wearable by threefold, enabling the
potential of continuously monitoring physiological signs for an
extended period. The method used to build HR prediction model
can be extended to develop an HRV prediction model. Lastly, we
demonstrate the possibility of enabling an extensive amount of
impactful applications with the continuous monitoring of HR &
HRV.
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