Demonstration

UIST’17 Adjunct, Oct. 22-25, 2017, Québec City, Canada

GestAKey: Get More Done with Just-a-Key on a Keyboard

Yilei Shi, Tomas Vega Galvez, Haimo Zhang, Suranga Nanayakkara
Singapore University of Technology and Design
8 Somapah Road, Singapore
{yilei, tomas, haimo, suranga} @ahlab.org

Figure 1. GestAKey, enabling novel keyboard interactions by detecting micro-gestures on individual keycaps. (a) Custom-made capacitive sensing
keycaps mounted on a regular keyboard. (b) Microgestures on keycaps open up new possibilities: b1) Superscript with swipe up; b2) Accented letters
by drawing the accent on the letter, b3) Deleting contents on the left or right with swipe left/right, b4) Greek letters by circling.

ABSTRACT

The computer keyboard is a widely used input device to
operate computers, such as text entry and command execu-
tion. Typically, keystrokes are detected as binary states (e.g.
“pressed” vs. “not pressed”). Due to this, more complex in-
put commands need multiple key presses that could go up to
pressing four keys at the same time, such as pressing “Cmd +
Shift + Opt + 4” to take a screenshot to the clipboard on Ma-
cOS. We present GestAKey, a technique to enable multifunc-
tional keystrokes on a single key, providing new interaction
possibilities on the familiar keyboards. The system consists
of touch sensitive keycaps and a software backend that rec-
ognizes micro-gestures performed on individual keys to per-
form system commands or input special characters. In this
demo, attendees will get the chance to interact with several
GestAKey-enabled proof-of-concept applications.

Author Keywords
Keyboard; Microgesture; Multifunctional Keystroke.

ACM Classification Keywords
H.5.2 User Interface: Input devices and strategies

INTRODUCTION

Since their invention in the middle of the 19th century, com-
puter keyboards remain an important input device for text en-
try and command execution. However, the binary nature of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the au-
thor/owner(s).

UIST’17 Adjunct, October 22-25, 2017, Québec City, QC, Canada.

©2017 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-5419-6/17/10.

http://dx.doi.org/10.1145/3131785.3131786

73

the keystroke action creates a bottleneck for efficient inter-
action. For example, to input symbols or commands, users
need to either memorize and use hotkeys (e.g., Ctrl+Alt+Del),
or click through button menus (e.g., to insert a special sym-
bol using Microsoft Word’s insert symbol dialog) in the GUI.
These operations are unintuitive and hard to learn [3], and in-
terrupt users from ongoing text entry tasks, leading to lower
efficiency. Previous researches have explored diverse meth-
ods to enhance the expressiveness of physical keyboards.
Taylor [4] and Zhang[5] enable gesture-based interactions on
a physical keyboard. Zheng [6] and Dietz [2] augmented
keystrokes on the entire keyboard with finger detection and
pressure sensing. We believe it is also possible to unlock
keystroke expressiveness within the area of a single keycap.
In this paper, we present GestAKey, a technique to detect
micro-gestures[1] on individual keycaps. This opens up in-
tuitive and efficient keyboard interactions such as inputting
accented letters and Greek letters with a simple swipe on the
keycap. The contributions of this paper include 1) a hard-
ware prototype of a touch-sensitive keycap that can be used
to augment a regular keyboard; 2) a software architecture that
classifies multiple gestures and translates them into system
commands; 3) proof-of-concept applications that enable effi-
cient text input and system operations.

IMPLEMENTATION

GestAKey consists of two interacting systems: 1) The hard-
ware that reads touch data from keycaps when pressed; 2) The
software that listens for key events, recognizes gestures, and
performs the corresponding functions.

Hardware Design

The hardware system has three components: 1) 3D-printed
keycaps equipped with capacitive sensing matrices (5x4
points) and custom-made PCBs (14x14mm) (Figure 2); 2)

Demonstration

Connector
Y-axis
sensing
pad

wwpt

Capacitive
Sensor

Figure 2. Structure of a single GestAKey keycap: (a) Each keycap con-
sists of two parts: 3D-printed support and PCB. (b) Bottom layer: ca-
pacitive sensing IC and connector; (c) Top layer: sensing pad matrix.

Multiplexers connecting to capacitive sensing keycaps; 3)
Microcontroller Unit (MCU) that reads data from the capaci-
tive sensing keycaps via the multiplexers and transmits to the
computer. The top layer of the PCB has a 5x4 matrix of ca-
pacitive sensing pads and bottom layer has a capacitive sens-
ing IC (MPR121) and a connector to the multiplexer. When
a key is pressed, the MCU receives the corresponding key-
code from the operating system, reads touch data from the
capacitive sensing matrix of the respective keycap, and sends
it back to the software system (for classification). Given that
MPRI121 can only be configured to 4 different I2C addresses,
we used multiplexers to read from 27 different keys.

On key pressed...

@ e D> @ rrarrarnan s s an e
Key Event ‘LE> Application —> Gesture —> Sensor

; uDP . UART .
Listener Controller «— Classifier <«— Multiplexer
—===-==-= R -

... read key gesture
Figure 3. Data flow in the software system. Gray arrows between the
components indicate the actual communication protocols used for data
transmission. Red lines indicates two directions of data flow: keystroke
events (orange dotted line), and gesture data (orange dashed line).

Software System

The software system consists of the following four parts. Key
Event Listener: a C program that listens for OS-level key
presses/releases; App Controller: a Node.js server that or-
chestrates data flow and triggers functions; Gesture Recog-
nizer: a Python script that classifies micro-gestures; Sensor
Multiplexer: an Arduino program that reads data from multi-
ple capacitive touch matrices. In the current implementation,
there are two directions of data flow, for keystroke events (or-
ange dotted line) and gesture data (orange dashed line) re-
spectively (Figure 3). Keystroke: The Key Event Listener
listens for key press/release events and sends them to the App
Controller, which in turn relays them to the Sensor Multi-
plexer. The MCU then multiplexes into the touch sensing ma-
trix of the corresponding keycap and extracts raw data. Ges-
ture: The Sensor Multiplexer sends touch data from the se-
lected keycap to the Gesture Classifier. Classified gestures are
then sent to the App Controller, where application-specific
functions are triggered using Apple’s JavaScript for Automa-
tion framework.

APPLICATIONS

Special function keys
We augmented two function keys Fn and Backspace for two
special operations: "Mode Change” and "Power Delete”.

74

UIST’17 Adjunct, Oct. 22-25, 2017, Québec City, Canada

Mode Change: A downward swiping gesture while press-
ing the Fn key switches between different GestAKey modes.
Currently, two modes are supported: 1) a Shortcut Mode that
allows single-key interactions with applications; 2) a Symbol
Mode that allows inputting special characters.

Power Delete: Typically, the backspace/delete key erases a
single character to the left/right of the current cursor posi-
tion. To delete text by words or sentences, the user needs to
either select the words or sentences before deletion, or use
modifier keys in combination with the backspace/delete keys,
to change the granularity of deletion. GestAKey allows the
user to delete by words and sentences in both directions from
the cursor, by combining the keystroke on the backspace key
with swipe gestures on its keycap. For example, a left/right
swipe deletes a word to the left/right of the cursor, while an
up/down swipe deletes a sentence to the left/right. This sim-
plifies the different modes of text deletion into simple presses
and swipes.

e | 11 | — 1~ N IA VO

Formatting Accent Greek

Function

Y

2 a @ a a a a o

Figure 4. In Symbol Mode, GestAKey enables users to input three kinds
of formatting text with micro-gestures: (1) Superscript and subscript, (2)
Accented and (3) Greek letter.

Alphanumerical keys

Shortcut Mode: GestAKey enables easy access to commonly
used functions. Users can open an application or perform
app-specific functions, by pressing a key and performing ges-
tures on that key. For example, open a YouTube tab in safari
by doing circling gesture on “Y”. When listening to music,
pressing “m” and swiping up on its keycap can display the in-
formation of the song playing, and pressing “m” and swiping
down can add a song to the library.

Symbol Mode: Styling text, such as adding accents and trans-
forming to superscript/subscript, is often non-intuitive, re-
quiring users to memorize special hotkey combinations (e.g.,
pressing “option+e, a” for “4”), or a sequence of interactions
with GUI elements (e.g., selecting the text, then apply su-
perscript/subscript from the text format toolbar). GestAKey
allows for simultaneous inputting and styling of text, which
is as easy as pressing and swiping. For example, pressing “a”
and swiping top-right inputs “4”, pressing and swiping up or
down inputs a super/subscript, and pressing and performing
a circular gesture inputs Greek letters (e.g. pressing and cir-
cling on “a” input). The mapping between gestures and text
style is shown in Figure 4.

CONCLUSION

In this work, we introduced GestAKey, a technique that
enables multifunctional keystrokes on a keycap via micro-
gesture recognition. We believe that this opens up new design
spaces for interactions on a keyboard. The interaction design
of GestAKey technology focuses on intuitiveness, learnabil-
ity, and interaction efficiency, which will be the subject of our
future investigation.

Demonstration

REFERENCES

1.

Chan, L., Chen, M. Y., and Chen, W.-h. C. B.-y.
FingerPad : Private and Subtle Interaction Using
Fingertips. 255-260.

. Dietz, P. H., Eidelson, B., Westhues, J., and Bathiche, S.

A practical pressure sensitive computer keyboard. Ulist
(2009), 55.

. Hammond, J. M., Harvey, C. M., Koubek, R. J.,

Compton, W. D., and Darisipudi, A. Distributed
Collaborative Design Teams : Media Effects on Design
Processes Distributed Collaborative Design Teams :
Media Effects on Design Processes. International Journal

75

UIST’17 Adjunct, Oct. 22-25, 2017, Québec City, Canada

of Human-Computer Interaction 7318, June 2015 (2005),
37-41.

. Taylor, S., Keskin, C., Hilliges, O., Izadi, S., and Helmes,

J. Type-hover-swipe in 96 bytes. Proceedings of the 32nd
annual ACM conference on Human factors in computing
systems - CHI 14 (2014), 1695-1704.

. Zhang, H., and Li, Y. GestKeyboard. Proceedings of the

32nd annual ACM conference on Human factors in
computing systems - CHI 14 (2014), 1675-1684.

. Zheng, J., and Vogel, D. Finger-Aware Shortcuts.

Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems - CHI 16 (2016),
4274-4285.

	Introduction
	Implementation
	Hardware Design
	Software System

	Applications
	Special function keys
	Alphanumerical keys

	Conclusion
	REFERENCES

