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Figure 1. GestAKey, enabling novel keyboard interactions by detecting micro-gestures on individual keycaps. (a) Custom-made capacitive sensing
keycaps mounted on a regular keyboard. (b) Microgestures on keycaps open up new possibilities: b1) Input superscript letters with swipe up; b2) Input
accented letters by drawing the accent, b3) Delete contents on the left or right with swipe left/right, b4) Input Greek letters by circling.

ABSTRACT
Conventionally, keys on a physical keyboard have only two
states: “released” and “pressed”. As such, various tech-
niques, such as hotkeys, were designed to enhance keyboard
expressiveness. Realizing that users inevitably perform touch
actions during keystrokes, we propose GestAKey, leverag-
ing the location and motion of touch on individual keycaps
to augment the functionalities of existing keystrokes. With a
log study, we collected touch data for both normal usage (typ-
ing and hotkeys) and while performing touch gestures (loca-
tion and motion), which were analyzed to assess the viabil-
ity of augmenting keystrokes with simultaneous gestures. A
controlled experiment was conducted to compare GestAKey
with existing keyboard interaction techniques, in terms of ef-
ficiency and learnability. The results show that GestAKey
has comparable performance with hotkeys. We further dis-
cuss some insights on integrating such touch modality into
existing keyboard interaction, and demonstrate several usage
scenarios.
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INTRODUCTION
Although the keyboard remains the dominant input device for
text entry on computers, various applications require other
types of input, such as issuing commands, calling for more
expressive interactions on a keyboard. However, the keyboard
is restricted by its limited number of keys. To enhance the
expressiveness of a keyboard, users are often required to learn
different interaction techniques (e.g., hotkeys) or use other
input modalities (e.g., pressure or touch).

A widely used technique to expand the keyboard input space
is “chording” (i.e., pressing several keys simultaneously),
such as hotkeys. Although found to be more efficient than
using a mouse [21], hotkeys are underutilized by most people
[27, 21] due to the difficulty of learning and [15] executing
[24] them. Another approach to enrich the expressiveness of
a keyboard is to introduce new input modalities. Most re-
search in this direction excludes normal interaction with the
keyboard while interacting with new modalities [28, 29, 18],
treating the keyboard as a mere platform to host the sensors
and actuators of added modalities. Only a few studies synthe-
size the new modalities with existing keyboard interactions
[9, 38], such that the output is decided by the combination
of both interaction modalities. For example, in [38], both the
key pressed and the user’s hand posture decide the command.
However, these techniques require users to push a key from
different sides [9], or press a key in uncommon ways [38],
interrupting their normal interactions with a keyboard.

The aim of this research is to enhance the expressiveness of
keyboard interaction, in a way that is easy to learn and per-
form, and is integrated into the existing modality of a key-
board. Realizing that users inevitably perform touch actions
during keystrokes, we created GestAKey, a technique to en-
hance expressiveness of a keystroke with touch information
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on individual keycaps. For example, pressing “S” while swip-
ing up can take a screenshot and save it to the desktop. Press-
ing “S” while swiping down can take a screenshot and save it
to the clipboard. Pressing “B” while drawing a circle could
input a special character β”. GestAKey is a new keyboard
interaction method with the following features: (1) Allows
users to maintain the hand posture they currently use for typ-
ing to minimize the interference with existing interaction; (2)
Creates new interaction mnemonics that help users remem-
ber the mapping between the functions and their correspond-
ing operations. (3) Combines the new modality with existing
keyboard interactions (i.e., keystrokes).

This paper contributes in the following three aspects:

• A novel interaction technique that leverages touch informa-
tion while performing keystrokes, and the hardware proto-
type of a touch-sensitive keycap for such interaction.

• A log study that explored the possible touch gestures of dif-
ferent fingers within the area of individual keycaps. A con-
trolled experiment that compared the efficiency and learn-
ability of GestAKey with hotkeys and long pressing.

• Demonstrations of several usage scenarios of the Ges-
tAKey technology.

RELATED WORK
Our work related to research in two areas: gesture interaction
on soft keyboards and augmented physical keyboards.

Gesture Interactions on Soft Keyboards
Soft keyboards have been widely explored for their potential
in gestural interaction, beyond the mere emulation of their
physical counterparts. In [16], a marking-menu was used to
augment a stylus-based soft keyboard. After a user lands the
stylus on a key, the character is entered and a marking-menu
would pop up. Users could then directly input another let-
ter by moving the stylus on to the selection on the marking-
menu. Instead of separating taps to input single letters, shape-
writing has been leveraged to input words on a soft keyboard
[35, 19, 36]. To input a whole word with shape-writing, a
user performs a continuous gesture that passes through all
the characters used to spell that word, which turned out to
be fast and easy to learn for most common words. Based on
the gesture-typing technique, Alvina et al.[5] designed a soft
keyboard that mapped input gesture features to a continuous
output parameter space, such as the RGB color of the text.
Other research has used gestures on soft keyboards to input
special symbols [14], replace functionalities of special keys
(i.e., Space, Backspace, Shift and Enter) [22, 7], input alter-
native characters [3, 2], or even issue specific commands on
mobile devices [4].

Although some research on soft keyboards shared the feature
of typing and gesturing on a key with our work, most of them
focused on text entry [16, 35, 14, 7, 2], and only a few ex-
plored the potential of issuing commands [4]. Our work dif-
ferentiates from these previous works on soft keyboards in
two ways: (1) We explore gestural interaction within indi-
vidual physical keycaps, whose edges provide distinct hap-
tic feedback to support eyes-free gestural interaction; (2) The

concurrent execution of gesture and actual keystrokes is ex-
plored in our study, which is not possible on a touch-only
interaction paradigm. As powerful shape mnemonics [25, 6,
34], gestures can augment existing functions of keystrokes.
They showed desirable learnability and intuitiveness in our
evaluation.

Augmented Physical Keyboards
Various methods have been applied to augment the physi-
cal keyboard. One strategy is to leverage the existing in-
put modality of the keyboard without introducing any other
modifications. For example, GestKeyboard [37] recognized
motion gestures on the whole keyboard according to the se-
quence of pressing multiple adjacent keys; Wobbrock et al.
[32] used 4 keys to mimic the writing of Roman letters for
high learnability; and Jannotti [17] presented a technique to
mimic the shape of characters on a numeric keypad. Sequen-
tial key pressing has also been used to issue commands [8].
Most of these works have limited gesture resolution [37] or
inferior input throughput [32, 17].

An alternative strategy is to integrate sensors and actuators
into a physical keyboard to support other interaction modali-
ties. SmartPad [26], equipped with an array of electrode sen-
sors, was able to detect finger position hovering above the
keypad. A vision-based method [31] to detect pinch gestures
above a keyboard also exists. Taylor et al. [28] equipped the
keyboard with a low-resolution infrared proximity sensor ma-
trix, enabling the detection of 3D hand gesture above the key-
board. Fallot-Burghardt [12] combined the conventional key-
board with an extended touchpad, making the whole key area
touch sensitive. Tung et al. [29] realized a similar function
by covering the keyboard with a capacitive sensing grid and
allowed users to switch between typing and pointing modes
with a foot pedal. On the new MacBook Pro, TouchBar [1]
is a strip-shaped area on a physical keyboard where users can
perform touch interactions. It enables users to perform simple
tasks such as changing the volume or brightness. Although
the interactions listed above introduced new input modalities
on a keyboard, they did not synthesize these new interactions
with the existing interaction of a keyboard.

In contrast, Métamorphe [9] used actuated keys to augment
the hotkey feature. Users can laterally push the key in dif-
ferent directions to trigger various commands. Finger-aware
shortcut [38] realized multifunctional keystrokes by using
hand posture detection. These two works augmented the
hotkey feature, but users still had to learn and remember ar-
bitrary mappings between actions and system responses.

Other modalities have also been used to augment physical
keyboards. Pressure sensing keyboard [11] augmented the
function of keystrokes with force sensors. Touch-display key-
board [10] realized multifunctional keystrokes by projecting
icons representing different functions onto individual key-
caps, which gave users a visual guidance and opened novel
input design possibilities on every single key.

Inspired by these previous works, GestAKey explores the op-
tion of augmenting individual keycaps with an even higher
resolution modality of input - 2D touch gestures.
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Figure 2. Structure of a single GestAKey keycap: (a) Each keycap con-
sists of two parts: 3D-printed support and PCB. (b) Bottom layer: ca-
pacitive sensing IC and connector; (c) Top layer: sensing pad matrix.

GESTAKEY

GestAKey Concept
A key on a physical keyboard is a normally-open switch hav-
ing only two states: ON and OFF. As such, with single key
presses, the input space is limited by the number of keys on
a keyboard. Based on the fact that a user’s fingers inevitably
touch the keycaps as they perform keystrokes, the key concept
of GestAKey is to leverage the keycap surface as a touchpad
to enable touch interactions during a keystroke. Our work
integrates keystroke with touch gesture in the two following
ways. First, by integrating touch gestures on individual key-
caps, we integrate touch interaction together with keystrokes.
Second, we leverage the press and release events of a key as
a way to delimit an intended touch gesture, which eliminates
the false positives of gesture detection. With GestAKey, users
are allowed to perform diverse touch gestures between the
pressing and releasing of a key. By integrating touch gesture
information and key events, the functions of a keystroke could
be augmented in various ways. Our goal is to provide a new
interaction technique that can benefit users in the following
aspects:

• Subtle Interaction: The area of a keycap is used as a
touchpad where users can perform subtle touch gestures
without changing their natural hand posture. Such subtle
movements of finger are easy to perform while typing.

• Iconic Gesture: Compared with keyboard shortcuts, spa-
tial and iconic gestures have cognitive advantages and help
users to recall commands [6].

• Large Input Space: Hotkeys are restricted by the com-
bination of modifier keys that can be used. In contrast, a
touchpad usually provides more diverse input based on the
gestures users perform.

GestAKey consists of two subsystems: 1) The hardware that
reads touch data from keycaps, and 2) The software that lis-
tens for key events, recognizes gestures, and triggers the cor-
responding output.

Hardware Design
The hardware system has three components: 1) 3D-printed
keycaps equipped with capacitive sensing matrices (5x4
points) and custom-made PCBs (14x14mm) (Figure 2); 2)
Multiplexers connecting to capacitive sensing keycaps; 3)
Microcontroller Unit (MCU) that reads data from the capac-
itive sensing keycaps via the multiplexers and transmits to
the computer. The top layer of the PCB has a 5x4 matrix of
capacitive sensing pad and the bottom layer has a capacitive

Figure 3. Data flow in the software system. Gray arrows between the
components indicate the actual communication protocols used for data
transmission. Red lines indicate two directions of data flow: keystroke
events (orange dotted line), and gesture data (orange dashed line).

sensing IC (MPR121) as well as a connector to the multi-
plexer. When a key is pressed, the MCU receives the cor-
responding keycode from the operating system, reads touch
data from the capacitive sensing matrix of the respective key-
cap, and sends it back to the software system. Given that
MPR121 can only be configured to 4 different I2C addresses,
we used multiplexers to read from 27 different keys.

Software System
The software system consists of four main modules:

• Key Event Listener: a C program that listens for OS-level
key presses/releases.

• App Controller: a Node.js server that orchestrates data
flow and triggers functions.

• Gesture Recognizer: a Python script that classifies ges-
tures.

• Sensor Multiplexer: an Arduino program that reads data
from multiple capacitive touch matrices.

In the current implementation, there are two directions of data
flow - for keystroke events (orange dotted line) and gesture
data (orange dashed line) respectively (Figure 3).

Keystroke Data Flow: The Key Event Listener listens for
key press/release events and sends them to the App Con-
troller, which in turn relays them to the Sensor Multiplexer.
The MCU then multiplexes into the touch sensing matrix of
the corresponding keycap and extracts raw data.

Gesture Data Flow: The Sensor Multiplexer sends touch
data from the selected keycap to the Gesture Classifier. Clas-
sified gestures are then sent to the App Controller, where
application-specific functions are triggered using Apple’s
JavaScript for Automation framework.

Gesture Design and Recognition
To design the gestures, we observed behaviors during text
entry and hotkey activities and made two key observations.
First, users would usually strike on a certain sub-area within a
keycap, leaving the rest of the keycap rarely touched, specifi-
cally on the edges and corners. Second, a finger would rarely
slip during a keystroke. Inspired by these observations, we
defined static and dynamic gestures that leverage the position
and motion of a touch (Figure 4). For static gestures, users
need to touch a specific area of the keycap while pressing it.
We defined 9 positions for static touch on a keycap: north
(N), south (S), east (E), west (W), northwest (NW), north-
east (NE), southeast (SE), southwest (SW) and middle (M).
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Figure 4. Log study gesture list: (a) 8 single directional dynamic ges-
tures; (b) 8 compound complex dynamic gestures; (c) 9 static gestures.

For dynamic gestures, users needed to perform a directional
motion gesture while performing a keystroke. We defined 8
single-directional gestures and 8 reciprocal-directional com-
pound gestures. Single gestures required users to swipe at a
specific direction, which includes N, S, E, W, NW, NE, SE
and SW. Compound gestures required users to swipe at a spe-
cific direction first, then, without lifting the finger, swipe back
to the original position.

Our gesture set imposed several challenges for recognition.
The first was deciding what touch data represent users’ in-
tended gestures. Our approach was to delimit a gesture
sample using the key-press and key-release events, between
which touch points on that key were extracted as valid ges-
ture data. The reason for this treatment was that in practical
applications, the finger might be already touching the keycap
before the keystroke, making it difficult to decide the start of
actual gesture data. Delimiting gesture data by key events
would not only make it easier for gesture segmentation, but
also allow the user to perceive the start and end of the ges-
ture through the tactile feedback of the keys on the physical
keyboards.

Another challenge in using our gesture set was in classifying
gestures based on location, orientation, and scale sensitivity.
This controlled whether gestures of the same shape but with
different location, orientation, or size should be considered
as the same gesture by the classifier. For our static gestures,
the gesture class should be scale and location sensitive; other-
wise, the classifier would not distinguish between the differ-
ent locations of touch, and might wrongly accept larger ges-
tures that involve motion. For dynamic gestures, the gesture
classes should be orientation sensitive but location and scale
invariant; otherwise, the classifier would not be able to dis-
tinguish between different directions of the gestures. The im-
plementation of the gesture recognizing framework was based
on the $1 gesture recognizer [33]. The original $1 recognizer
is orientation and scale invariant by default, and its succes-
sor, Protractor [23], is inherently scale-invariant. Thus, these
recognizers cannot be used as-is. We modified the $1 prepro-
cessing pipeline to unify the gesture classification procedure
for all our gestures (Figure 5).

In the original $1 recognizer, three core transformations, “Ro-
tate”, “Scale”, and “Center”, removes rotation, scale, and lo-
cation sensitivity after each stage, but provides no mechanism
to selectively control sensitivity of each type of transforma-
tion. To achieve this mechanism to support our gesture set

Figure 5. The gesture preprocessing pipeline: an incoming sample
(the green node) undergoes different paths, creating preprocessed sam-
ples for gesture classification with different transformation sensitivities.
Presence/absence of the letters on the red nodes denotes the transfor-
mation sensitivity/invariance at the respective preprocessing stage: L -
location sensitive, O - orientation sensitive, S - scale sensitive.

with heterogeneous transformation sensitivities, we moved
the “Center” stage before the optional and independent “Ro-
tate” and “Scale” stages, and introduced the “Put-back” stage
to restore location sensitivity after removing orientation and
scale sensitivity. As illustrated in Figure 5, a sample under-
goes different paths in the preprocessing pipeline, which are
used for similarity measure calculation against gesture classes
with the same transformation sensitivities. For example, a
preprocessed gesture sample after the “Resample → Center
→ Scale” stages of the pipeline are used to compare with
gesture classes defined to be position and scale invariant, but
rotation sensitive (e.g., a top-to-bottom straight line), whose
template underwent the same preprocessing when added to
the class (see details in [33]). A different version of the same
sample after the “Resample→ Center→ Rotate→ Scale→
Put-back” stages are used for classes that are rotation and
scale invariant but location sensitive (e.g., a static touch on
the top-right corner of the keycap). In addition, we employed
proportional scaling instead of the non-proportional scaling
in the original $1 recognizer, to increase robustness for one-
dimensional gestures in our gesture set.

LOG STUDY
A log study was conducted to investigate feasibility of the
GestAKey technology in two aspects: 1) whether our pro-
totype system has sufficient spatial and temporal resolution
to support different touch actions, and if so, 2) whether the
users are able to reliably perform various touch gestures. For
the log study, we identified two existing activities on a key-
board, text entry and hotkey. Additionally, we hypothesize
that gesturing on individual keycaps could also be a viable in-
teraction technique. Altogether, we conducted the log study
in two sessions, the first collecting touch data for represen-
tative text entry and hotkey tasks using a keyboard, and the
second collecting sample data for the gesture set we defined
in the previous section.

Participants and Apparatus
We recruited 12 participants (8 male, 4 female, mean age =
26.3, SD = 2.3) for the log study. All participants were right-
handed and experienced with physical keyboard operations,
averaging a daily computer usage of around 8 hours (mean
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Figure 6. GestAKey apparatus and log study application user interface:
(a) UI for hotkey log study; (b) UI for text entry log study; (c) GestAKey
prototype; (d) UI for dynamic gesture log study. The purple arrow in-
dicates the gesture to be performed and the purple finger indicates the
finger to be used; (e) UI for static gesture log study. The purple dot
indicates the static gesture to be performed.

= 8.0, SD = 1.6). To minimize variance caused by differ-
ent typing styles (e.g., touch typing, hunt-and-peck, etc.), we
selected participants that used standard touch-typing in their
daily lives.

We modified a mechanical keyboard with GestAKey technol-
ogy to conduct the log study. The keyboard had a 60% QW-
ERTY layout and was chosen due to its simple design that
facilitated our modifications. Keycaps of the 26 alphabetical
keys were replaced by custom-made capacitive-sensing key-
caps (Figure 6 (c)). To avoid interference with the PCB on
the top of the keycaps, key labels were front-printed (Figure
1(a)), which retained the visual accessibility as in normal key-
board usage. The log study was run as a web app hosted on
a local Node.js server. Both OS-level keyboard events and
touch data from the keycaps were sent to the server through
sockets and stored in a local MongoDB database. The whole
system ran on a MacBook Pro laptop computer with 3GHz
Intel Core i7 processor, 8GB of memory, and running the ma-
cOS Sierra operating system. The user interface for the tasks
in the experiment was shown on a 23-inch display in a full-
screen tab in the Google Chrome browser.

Study Design, Task and Stimuli
The log study consisted of two sessions. The first session
collected data about the participants’ existing text entry and
hotkey actions (Figure 6 (a), (b)), and the second session col-
lected sample data for intended gestural interactions that hap-
pened concurrently with a keystroke (Figure 6 (d) (e)).

The first session randomly interleaved two kinds of tasks: text
entry and hotkey. For text entry tasks, participants were re-
quired to correctly input a sentence with touch-typing. As
shown in Figure 6 (a), a text box was provided for user text
entry. The expected sentence was always visible above this

textbox. The user-entered text was color-coded for the cor-
rectness of the input: green for correct letters, and red for
incorrect letters. The text corpus for the text entry tasks were
chosen from the Enron Mobile corpus [30], using its subset
of 80 sentences with representative character bigram frequen-
cies. Participants had to input the correct sentence, includ-
ing punctuation and letter casing, followed by pressing the
“Enter” key, to proceed to the next trial. The participants
were allowed to perform text entry and edit in normal ways
provided by the operating system (“Delete”, “Backspace”,
“Home”, “End”, arrow keys, etc.), except for use of mouse.
For hotkey trials, a stimulus showed a character key and at
least one modifier keys above the textbox (Figure 6 (b)). If
a participant performed the correct hotkey combination, the
study automatically advanced to the next trial. Otherwise,
the presented hotkey combination would turn red to signify
an incorrect response. All 7 combinations of three modi-
fier keys, “Ctrl”, “Opt” (macOS equivalence of the Windows
“Alt” key) and “Shift” were used with each of the 26 alpha-
betical keys. The total number of trials in the first session of
log study was therefore: 26 keys×7modifier combinations+
80 sentences = 262. It typically took ~30 minutes to finish
the first session of the log study.

In the second session, participants were required to perform
various touch gestures on a keycap while pressing it. The
gesture set defined in the earlier section was used. As shown
in Figure 6 (d) and (e), the gestures to be tested were indi-
cated by purple arrows above the key or dots. The purple
finger was the one that had to be used to perform the ges-
ture. For this session, stimuli were given as illustrations, not
indicating the actual shape of the gestures expected of the
participants. Participants had to perform a gesture that they
thought matched the illustration. Participants had to confirm
the completion of a gesture input by pressing the “Enter”
key, which saved the gesture sample and advanced to the next
trial. Otherwise, the participants could press the “Backspace”
key to perform the gesture again. In total, there were
26 keys × (9 static positions + 8 single direction gestures +
8 compound gestures) = 650 trials in this session. It typi-
cally took ~40 minutes to finish the second session of the log
study.

The two sessions of the log study were run consecutively,
with a 3-minute break in between the sessions. Except for 2
participants who attended to personal matters, all other partic-
ipants were ready to start the second session before the break
finished, indicating that fatigue was minimal.

Results

Touch Position
1 participant’s data didn’t show touch actions, so we didn’t
analyse it. The reason may be that he pressed the keys with
fingernails, making the touch event hard to detect with capac-
itive sensing. For each trial in the first session of the log study
(text entry and hotkey), touch locations were aggregated for
each key over all participants and shown as heatmaps (Fig-
ure 7). It was observed that while touch locations on certain
keys were consistently concentrated within a small sub-area,
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Figure 7. The heatmap of the touch point while typing and performing
hotkey, overlaid on each key

touch locations on other keys were subject to higher vari-
ances. For keys in the home positions of touch typing (i.e.,
“A”, “S”, “D”, “F”, “J”, “k”, “L”), the touch locations re-
flected the natural posture when the fingers rested on these
keys. The touch locations on the “A”, “S”, “D”, “F” keys
matched the curvature formed by the fingertips when they
were placed on the flat surface. Similarly, the “J”, “K”, “L”
keys reflected similar but symmetric touch locations for the
right hand. For other keys, the touch locations reflected the
way they were typed with the touch-typing technique. For ex-
ample, in touch typing, the “Z” key is supposed to be pressed
by the little finger, which idly rests on “A”. As seen in its
heatmap, the touch locations on the “Z” key mostly concen-
trated on the top-left corner, which might reflect that partic-
ipants moved their fingers minimally from “A” to “Z”, and
landed on the part of the “Z” key that was nearest to “A”.

For keys that required large movement of the fingers from
their resting positions, the touch locations either had large
dispersion (e.g., “Q”, designated to the left little finger, which
rests on the “A” key in touch typing), or were very concen-
trated (e.g., “Y”, designated to the right index finger, which
rests on the “J” key in touch typing). Although it is not the
scope of this research to understand why certain keys are
touched in certain ways, we speculate that the difference be-
tween the touch patterns on “Q” and “Y” could be due to the
fact that while there are various ways to extend the left little
finger to reach “Q” from “A”. The usual way of extending the
right index finger from “J” to “Y” is a to do a full extension
of the finger, hitting a very concentrated area on “Y”. Overall,
the per-key heatmaps reveal that it is feasible to utilize touch
locations on individual keycaps to enhance the expressive-
ness of keystrokes. Specifically, for keys with concentrated
touch areas, such as “A”, “S”, “D”, “F”, “W”, “E”, “R”, “T”,
“K”, “L”, “U”, “I”, “O”, it might be easier to distinguish be-
tween a normal keystroke and a “bezel” keystroke, which is
performed which touching the edges of these keycaps.

Gesture Distinguishability
Gesture samples from the second session of the log study en-
abled us to perform a preliminary evaluation of the quality of
our gesture set and provides implications on the practical use
of these gestures.We conducted an exhaustive leave-one-out
cross-validation on all gesture samples collected in the log
study1. Due to time constraints of the user study, only one
sample per gesture per key per user was collected, resulting
in a challenging scenario for the cross-validation.

1https://goo.gl/vxm8wm

By further requiring that the number of touch points in each
gesture sample be at least 4 for static gestures, and 8 for
dynamic gestures (compared to the minimum resampling
count of 32 recommended in [33]), 3087 gesture samples
participated the cross-validation. On average, there were
3087÷ 25 classes ÷ 26 keys = 4.75 tests that could be per-
formed for each gesture class on each key, which would be
distributed into a row of 25 cells in the confusion matrix for
that key. Therefore, it makes little sense to investigate confu-
sion matrix for individual keys. Instead, the confusion matrix
for the full set of 25 static and dynamic gestures aggregated
over all keys and users is presented in Figure 8 (left half). The
row labels of the confusion matrices are input gesture classes,
and column labels are output gesture classes produced by the
recognizer. The cell with index (i, j) represents the percent-
age of occurrences where the ith gesture is classified as the jth

gesture. To facilitate comprehension of the data, the percent-
ages are transformed as horizontal bars that fill from left to
right. It can be seen that while static gestures and dynamic
gestures are perfectly distinguished from each other, there
still exists much ambiguity within these categories, indicated
by the non-zero elements that do not lie on the diagonal of the
matrix.

For static keys, it appeared that the “center” static touch was
difficult to differentiate from other static touch. In addition
to the intuition that the “center” touch should not be used as
a gesture, we should also be skeptical of the use of a special
non-gesture class to distinguish between gesture and normal
usage of the keyboard. As revealed in the heatmap, there was
a high variance in touch locations in text entry and hotkey
activities on the keyboard. The difficulty of differentiating a
specifically instructed “center” touch from other gestures in-
dicates that a touch generated from normal usage of the key-
board is likely to be equally ambiguous. For the scope of this
research, we focused on how well the gestures could be dif-
ferentiated, and future research would need to address how
to reliably differentiate between non-gestures and gestures on
individual keycaps.

For dynamic gestures, an interesting observation was that
single-directional gestures were harder to distinguish from
two-directional gestures that start with the same direction
compared to the other classes. This may have been caused
by users’ subconscious motion back to the center of the key-
cap when finishing a gesture during the log study. Despite the
low accuracies exhibited in the confusion matrix, the higher
percentage value of the elements on the diagonal compared to
other individual cells in that row indicates that there is reason
to believe that the accuracy would improve with increased
spatial and temporal resolution of the sensing hardware, as
well as more samples used for cross-validation.

As we do not expect all 25 gestures to be used to overload
the keys with special functions (compared with the 7 com-
binations of the “Ctrl”, “Shift”, “Alt” modifiers that over-
load a key, and the 10 combinations of hand form and fin-
ger in [38]), we investigated whether reducing the number
of classes would improve accuracy. From the initial 9 posi-
tions/directions of static and dynamic gestures, we removed
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Figure 8. Confusion matrices for the cross validation. Left: confusion
matrix for all 25 gestures; Right: 6 possible subset of gestures derived
from the full set.

every other gesture class, leaving either the diagonal or the
orthogonal positions/directions. For each reduced set of dy-
namic gestures, we further used subsets that were either one-
directional or two-directional. The respective confusion ma-
trices are shown in Figure 8 (right half). 6 confusion matrices
are organized by direction (“orthogonal/diagonal”) in rows,
and type of gestures (“static/single-direction/two-direction”)
in columns.

Gesture Performance
We focused on accuracy and speed of gesture performance
as the two most important indices to decide the feasibility of
augmenting each key. The accuracy was calculated as the
proportion of correctly (i.e., true positive) classified gestures
performed on each keycap, over all participants and all ges-
ture classes, based on the cross-validation result. The speed
was calculated as the average duration of these gestures, on
each keycap, over all participants and all gesture classes.

The more accurate and faster gestures are performed on a key-
cap, the more feasible it is to augment that keycap. To visu-
ally suggest the keys for augmentation, Figure 9 shows the
speed and accuracy for each keycap, for all types of gesture
and for each type of gestures individually. The X-axes shows
the gesture duration in milliseconds, and the Y-axes shows
accuracy in terms of percentage of true positive classification
results. Each data point is visualized using the corresponding
character of the keycap, and is color-coded according to the
finger (for both hands) assigned to that keycap: red for index
finger, green for middle finger, blue for ring finger, and pur-
ple for little finger. As the top-left corner represents perfect
accuracy and minimum gesture articulation time, the prox-
imity of keys to the top-left corner indicates their feasibility
for augmentation. It can be seen from the figure that key-
caps corresponding to the index finger are most appropriate
for augmentation, most notably the keys “H”, “Y”, “T”, “B”,
“G”, and “N”, which are not on the “home-columns” of the
index fingers. Interestingly, keycaps on the ”home-column”
of the index fingers are not as feasible.

Discussion and Limitations
The log study exposes several challenges in supporting gestu-
ral interactions on such small areas on keycaps. First, with the
number of individual touch-sensitive keycaps and the simple
electronics we used, scaling up in terms of spatial or temporal
resolution is a non-trivial task. Nonetheless, performant de-
vice would increase the resolution of gesture samples, which

Figure 9. Speed and accuracy of gesture performance for individual
keycaps. The letters are color-coded based on the corresponding fingers
in touch-typing: red - index finger; green - middle finger; blue - ring
finger; purple - little finger.

in turn improves accuracy for gesture classification. Second,
given the differences in touch behaviors on different keycaps,
it is desirable to employ per-key gesture classification. At the
current stage of the prototype system, there are not enough
gesture samples to support this approach, and future investi-
gation could explore such possibilities. Third, instead of us-
ing a designed gesture set, a gesture elicitation study could be
done to investigate gestures that are comfortable and mean-
ingful to users.

Based on the confusion matrix (Figure 8) and per-key speed
and accuracy (Figure 9), we recommend two approaches to
improve gesture performance on a chosen key: 1) reduce the
number of gesture classes; and 2) consider allowing different
fingers to perform gestures on a keycap.

Our experiment had limitations. In the data analysis, it was
shown that reducing number of classes improved the clas-
sification accuracy, but further improvement of the sensing
hardware and tuning of the algorithm is still required, as the
highest recognition accuracy among all the possible reduced
gesture sets is mere 85.2% for the “bottom-left” static gesture
and 67.9% for the “NE-SW” dynamic gesture. Due to con-
cerns of user fatigue, length of the study, and the high dimen-
sional nature of the dataset, we were unable to collect enough
data to make statistically robust inquiries about the feasibility
of GestAKey on each keycap. Nonetheless, we have carried
out a preliminary analysis to determine which keys are suit-
able for augmentation with the GestAKey technique.

CONTROLLED EXPERIMENT
We hypothesize that compared to overloading a key with
modifiers, which is the approach of hotkeys, overloading a
key with gestures is more flexible, and can therefore lead
to more intuitive and learnable input methods. To verify
this hypothesis, we conducted a controlled experiment where
the performance of GestAKey was compared with two tra-
ditional input techniques, hotkey and long press. We se-
lected the task of text input for accented characters for two
reasons: 1) It highlights the importance of self-explanatory
shape mnemonics in real-world scenarios [20], in contrast to
previous research where arbitrary action-to-command map-
ping was used [38], or only low-level motor performance was
assessed [9]; 2) All participants were equally unfamiliar with
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Figure 10. The user interface for controlled experiment.

each input technique, ensuring fair comparison in terms of ex-
pertise, and allowing for observation of learning effects. We
investigated the speed, accuracy, error rate, and learnability
of each technique.

Participants and Apparatus
12 participants (5 female, mean age = 26, SD = 2.1) were re-
cruited for the experiment. All participants were touch-typists
and right-handed. The same apparatus used in the log study
was used for the controlled experiment. To mitigate the ef-
fect of low gesture classification accuracy exposed in the log
study, we implemented a simple heuristic-based gesture clas-
sifier for the small set of inputs used in the study. It reached
an accuracy of 90% with single directional gesture and com-
pound directional gesture.

Task and Stimuli
The task of the controlled experiment was to input words with
accented letters. For every trial, participants were asked to
input a word with accented vowels using one of three input
techniques: hotkeys, long press or gesturing on individual
keycaps.

We chose commonly used accented vowels as the stimuli of
the experiment. All five vowels, (i.e. “a”, “e”, “i”, “o” and
“u”) were used to create the experiment trials. To mimic the
real text entry scenario, we chose to add different accents to
the vowels of English words, which the participants would
find familiar and provided the feeling of typing a whole word.
For fairness, all 5 words contained exactly one vowel and the
vowel was near the middle of the word. The five words were:
clack, whelm, hicks, fords, fluff. Based on these 5 words, we
applied three accents, which were “ ´ ”, “ ` ”, “ ˆ ”, on the vow-
els and created three new words for each one (e.g., “cláck”,
“clàck”, “clâck”).

With the gesture technique, the user performed three ges-
tures corresponding to the three shapes of the accent, “NE”,
“SE”, and “N-S”. With the hotkey technique, the user first
performed a dead key2, followed by the respective character
to add accent to. For example, “Opt + e” followed by “o”
2https://goo.gl/NGQ8EV

would produce “ó”. With the long press technique, the user
pressed and holded a character until a pop-up list appeared,
with accented versions of the character. The user then se-
lected the index of the desired accented character using nu-
meric input. The latter two techniques are built-in mecha-
nisms used in common macOS computers.

Procedure
The same user interface used for the log study was used for
the controlled experiment(Figure 10). Similar to the text en-
try tasks in the log study, the target word was shown above the
textbox. Participants were allowed to use the “Backspace”
key to edit the input, until it correctly matched the stimulus
and the“Enter” key was pressed to proceed to the next trial. In
addition, a cheat-sheet was accessible by holding the “Space”
key. The cheat-sheet showed how to input each of the accents
for each technique.

Design
The experiment was designed as a within-subject, repeated
measures, full factorial experiment. We were interested in the
factor of techniques and the learning effect. Therefore, we
counterbalanced the order of techniques within each block.
A participant would use one technique to finish all trials with
different words and accents, each repeated three times, in ran-
dom order, before moving on to the next technique. Three
blocks with identical sequence of techniques were adminis-
tered, and trials in each technique were randomized. In total,
the design was as follows:

5Letters × 3Accents × 3Techniques
×3Repetitions × 3Blocks = 405Trials

Typically it took about 40 to 50 minutes to finish the con-
trolled experiment.

Measures
We defined four measures to reflect the efficiency and learn-
ability while performing the trials. The first two were comple-
tion time of the whole trial, and number of times “Delete” was
pressed. These two conventional measures reflect the speed
and accuracy of task performance. The third measure was
the time it took to input the accented character alone. This
measure was different from the completion time of the whole
word, as it reflected the actuation speed using each technique,
by disregarding the time of cognitive process without physical
actions, such as recalling the mapping between gestures and
the shape of the accent. The last measure was the number of
times the “Space” key was pressed during the trial. This was
a measure of learnability and directly indicates how well the
participant has learnt each technique.

Results
Completion Time
The overall average completion time of whole words was
Mword = 5.42s (SDword= 1.35s) and for single accented char-
acters was Mword = 1.06s (SDword= 0.52s). The three tech-
niques had the following mean completion time of whole
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Figure 11. Experiment results: (a) Completion time of whole word with 95% confidence interval; (b) Completion time of single accented character with
95% confidence interval; (c) Box plot to show the distribution of corrections for each technique; (d) Total number of helps for each technique in each
block.

word: MLong press = 5.67s (SDLong press= 0.98s), MHotkey =
5.35s (SDHotkey = 1.72s) and MGesture =5.25s (SDGesture =
1.25s). For single accented characters, the three techniques
had the respective mean completion time of MLong press =
1.57s (SDLong press = 0.41s), MHotkey = 1.08s (SDHotkey =0.22s)
and MGesture = 0.51s (SDGesture = 0.17s).

It was found that block (F2, 22= 56.83, p < 0.01) had signif-
icant main effects on the completion time of a whole word.
TukeyHSD post-hoc tests found that: (1) Block 1 was sig-
nificantly slower than block 2 (p < 0.01) and block 3 (p <
0.01). (2) Block 3 was significantly faster than block 2 (p
= 0.02). No significant difference was found between tech-
niques (p = 0.14). There was a significant interaction effect
between block and technique (F4, 44 = 3.95, p < 0.01). From
Figure 12(a) we could see that users learned keyboard short-
cut fastest, although it was the slowest technique during the
initial use.

For the completion time of a single character, both block
(F2, 22= 5.70, p < 0.01) and technique (F2, 22= 132.91, p <
0.01) had significant main effects. TukeyHSD post-hoc tests
found that: (1) Block 1 was significantly slower than block 2
and block 3 (p < 0.01). But there was no significant differ-
ence between block 2 and block 3. (2) Gesture was 571ms
faster than hotkey, and 1056ms faster than long press (all sig-
nificant: p < 0.01). Hotkey was also significantly faster than
long press (p < 0.01). There was no significant interaction
effect between block and technique (F4, 44= 1.33, p > 0.1).
From Figure 12(b) we could see that the learning effect of
different techniques was not obvious. Users could reach the
expert performance quickly when they use GestAKey.

Error Rate
The average number of corrections per trial for each tech-
nique was: MLong press = 0.27 (SDLong press = 0.16), MHotkey
=0.50 (SDHotkey = 0.31), MGesture = 0.75 (SDGesture = 0.33).
The average number of corrections per trial for each blocks
was: MBlock1 = 0.63 (SDBlock1 = 0.41), MBlock2 = 0.46
(SDBlock2 = 0.30), MBlock3 = 0.42 (SDBlock3 = 0.25).

Both technique (F2, 22 = 29.26, p < 0.01) and block (F2, 22
= 6.06, p < 0.01) had significant main effects on error rate.
TukeyHSD post-hoc analysis found that long press had 0.48

corrections less than gesture, and 0.25 corrections less than
hotkey (all significant: p < 0.01). Block3 had 0.21 correction
less than Block1 (significant: p < 0.01). Block 2 had 0.17
corrections less than Block 1 (significant: p < 0.01).

Number of Help Requests
Both technique (F2,22 = 28.16, p < 0.01) and block (F2,22 =
36.16, p < 0.01) had significant main effects on how many
time participants hit the spacebar for help. TukeyHSD post-
hoc analysis found that Hotkey caused most space bar hitting,
0.041 more than gesture (p < 0.01) and there was no signif-
icant difference between long press and gesture (p = 0.80),
Block3 and Block2 (p = 0.90).

Discussion and Limitations
The results showed that although long press was the most ac-
curate and easiest-to-learn, it was the slowest technique to in-
put accented words. For the other two techniques, gesturing
on a keycap had a comparable overall speed with hotkeys.
However, gesturing on keycaps had better performance in
terms of input speed for a single accented character compared
to hotkeys. In addition, it was also easier to remember ges-
tures. These two findings suggest a potential improvement
on the other two techniques. The possible reasons of higher
error rate of the gesture technique could be: (1) although
we chose rarely used shortcuts, experienced users, such as
touch-typists, could still leverage their familiarity with the
keyboard. However, gesturing on individual keycaps was new

Figure 12. Completion time of (a) whole words and (b) single characters
in each block .
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Figure 13. GestAKey enables users to input three kinds of text format-
ting with gestures: (1) Superscript and subscript, (2) Accented and (3)
Greek letters.

to them. (2) while keystrokes can be reliably detected, ges-
ture recognition still suffers from low accuracy. In summary,
despite the temporary low accuracy limited by the current
implementation, GestAKey’s balance between efficiency and
learnability gives it potential to open up novel interactions.

Our experiment had limitations. Firstly, to highlight the im-
portance of intuitive shape mnemonics, we chose accented
letters as our stimuli, resulting in an unbalanced key selec-
tion. Secondly, there exists simpler hotkeys than those we
used. More studies need to be done to compare GestAKey
with simple hotkeys. Finally, there were only 3 different ac-
cents used in our study. In the future, we can investigate
more gestures, which may reveal results we didn’t discover
this time.

APPLICATIONS
We implemented several applications to demonstrate the pos-
sibilities of the GestAKey: Personalized Shortcuts, Aug-
mented Text Entry, and Enriched Gaming Experience.

Personalized Shortcuts
GestAKey can assign more meaningful and memorable func-
tionalities to a single key, which can be associated to the
position or direction of gestures. We implemented a demo
personalized shortcut application that supported a number of
GestAKey interactions. For example, the application could
be personalized such that pressing “M” and swiping up dis-
played information about the current music track. Pressing
and swiping down on“M” downloaded it. Pressing “Y” and
swiping up launches a browser and navigate to YouTube. Cir-
cular motions on the “V” key increased or decreased the vol-
ume, which conventionally requires more than one key to
control.

Augmented Text Entry
We implemented an intuitive stylized text entry plugin in Mi-
crosoft Word. It allowed the user to input stylized text while
entering the text. No explicit mode switch was required for
different styles, nor a mouse needed to interact with the GUI.
It leveraged the shape of gestures as mnemonics to facilitate
memorization. To input an accented letter, users could press a
key and perform the corresponding gesture, such as inputting
“á” by swiping to the top-right while performing a keystroke
on the “a” key. In a rich-text editor like Microsoft Word, by
pressing a letter and swiping up or down, users could input
that letter in superscript/subscript format, in a simple gesture
that did not distract users from the normal typing actions. A a
set of potential gestures to enable styling text using GestAKey
is shown in Figure 13.

Enriched Gaming Experience
GestAKey can also enrich the gaming experience by enabling
continuous parameter control. For example, when playing a
game, a running action is usually triggered by a specific key.
With GestAKey, players can accelerate the movement of the
character by swiping the fingertip towards the top of the key-
cap, or decelerate by swiping the fingertip towards the bottom
edge. To control the distance of a jumping action, players
can touch different areas of the keycap when performing the
keystroke for the jump action.

LIMITATIONS AND FUTURE WORK
In this paper, GestAKey technology was only evaluated for
text entry tasks. In our future investigations, we will eval-
uate the usability of GestAKey in other specific application
scenarios.

Our current scope only concerns a single-touch gesture on
a single keycap. It is interesting to explore multi-touch or
multi-key interactions using the GestAKey technology. For
example, two fingers can perform the same gesture on two
keys to further increase the interaction space of GestAKey.
Another future direction is to expand the GestAKey technol-
ogy to cover other types of keys, such as the spacebar, which
has a large area suitable for touch interaction, such as leverag-
ing the spacebar as a small touchpad. Finally, the GestAKey
system can be a tool to investigate users’ typing behaviors.
Our log study could be extended to a full investigation that
identifies touch patterns associated with keyboard usage, such
as typing, so as to extend our general knowledge on how we
type, which complements the inspirational work of [13].

CONCLUSION
In this work, we introduced GestAKey, a technique that en-
abled multifunctional keystrokes on a touch-sensitive keycap,
opening up new design opportunities for interactions on a
keyboard. We developed a custom-made keycap and built the
software and hardware systems to detect touch on individual
keycaps. We conducted a log study and verified the feasibility
of gestural interaction on keycaps. A controlled experiment
showed that although subject to system imperfections, our
technique still had a comparable overall performance. Appli-
cations using the GestAKey technology should leverage the
flexibility of gestural input and tightly couple it with exist-
ing key functions. With this approach, we believe GestAKey
technology will enable the creation of intuitive, learnable, and
efficient interaction experiences on keyboards.
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