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Figure 1: Gesturing on a physical keyboard. The green overlays show the keys that have been pressed and the red ones show the 

currently pressed keys. The red line running across keys illustrates the captured gesture stroke. 

ABSTRACT 
Stroke gestures are intuitive and efficient but often require 
gesture-capable input hardware such as a touchscreen. In 
this paper, we present GestKeyboard, a novel technique for 
gesturing over an ordinary, unmodified physical 
keyboard—that remains the major input modality for 
existing desktop and laptop computers. We discuss an 
exploratory study for understanding the design space of 
gesturing on a physical keyboard and our algorithms for 
detecting gestures in a modeless way, without interfering 
with the keyboard’s major functionality such as text entry 
and shortcuts activation. We explored various features for 
detecting gestures from a keyboard event stream. Our 
experiment based on the data collected from 10 participants 
indicated it is feasible to reliably detect gestures from 
normal keyboard use, 95% detection accuracy within a 
maximum latency of 200ms. 
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INTRODUCTION 
Gesture-based interaction is intuitive and efficient for many 
interaction tasks, and has become a promising interaction 
modality on various new-generation devices such as 
smartphones, tablets and tabletops. However, gesture-based 
interaction has not seen significant adoption in traditional 
computing environments and devices such as desktop 
computers or laptops. One important reason is that either 
traditional devices lack appropriate gesturing input 
mediums or existing input devices have been occupied for 
other purposes.   

Existing work that enables gesture-based interaction on a 
traditional computing device usually introduces additional 
hardware [6][8][11]. Although it is possible to use existing 
path-making devices such as a mouse or a trackpad for 
gestural input, an explicit mode switch is often required to 
disambiguate the gestural input from other uses of these 
devices such as target acquisition.  

In this paper, we present GestKeyboard, a technique that 
allows a user to perform gestures on an ordinary, physical 
keyboard. It requires no additional hardware, allows 
modeless switching between gesturing and the designed use 
of a keyboard—text entry and shortcut activation, and 
reduces homing effort—users can complete many tasks 
without having their hands to leave the keyboard switching 
to other input devices. 

Previously, physical keyboards have been augmented with 
additional sensors for various purposes such as pressure-
sensing [3] or touch display keyboards [2], and gesture 
support on keyboards has not been the focus of prior work. 
In contrast, we intend to enhance a regular keyboard for 
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gesture input with no physical modification or additional 
hardware. Our basic idea is straightforward. We view each 
key on the keyboard as a binary sensor that tells if a key is 
pressed, and the entire keyboard as an array of such sensors. 
By tracking when each key is pressed and released, we can 
recover a low-resolution trajectory of finger movement on 
the keyboard that can be fed to a gesture recognizer for 
interpretation.  

However, enabling such a gesturing capability is not 
without challenges. The keyboard provides a limited spatial 
resolution and when sliding the finger on the keyboard, key 
events are often noisy. For example, not every key on the 
finger travel path is registered and a key press might 
generate multiple events. In addition, we need to quickly 
differentiate gesturing from regular keyboard uses 
especially text entry. In this paper, we contribute the 
following: 
• A user study for understanding gesturing and regular 

keyboard behaviors and soliciting subjective feedback 
on gesturing on the keyboard; 

• A method for detecting gesturing from typing on the 
keyboard that achieves high accuracy (95%) within 
reasonable latency (maximally 200ms); 

• A process for transforming a keyboard event sequence 
into a spatial trajectory for gesture recognition and an 
adaptation of a template-based recognizer; 

• Two examples of GestKeyboard that demonstrate its use 
at both the platform system and the application level. 

In the rest of this paper, we first discuss the characteristic of 
physical keyboards and clarify our research problems. Two 
challenges in realizing GestKeyboard: gesture occurrence 
detection and gesture recognition. We then describe our 
user study, by which we collected user data for 
investigating these problems as well as acquiring user 
feedback on the usefulness of keyboard gestures. Next, we 
discuss our solutions and report their performance. We 
present two applications of GestKeyboard and discuss its 
limitation and future work. Finally, we discuss related work 
and conclude the paper.  

TECHNICAL PREAMBLE 
We started our investigation by understanding our target 
gesture sensing device—existing physical keyboards, 
including its hardware characteristics, its event 
representation and geometry that transforms an array of 
binary events into a spatial trajectory. 

Keyboard Hardware 
Most keyboards detect key presses and releases via a matrix 
of circuits [4][7], consisting of columns and rows of wires 
that are not in contact with each other. Keycaps are located 
at the intersections between column and row wires. When 
pressed, the keycap would bring the respective column and 
row wires into contact. The location of the key press is 
therefore detected by successively setting a high voltage on 
each column wire, and detecting the high voltage signal on 

each row wire. This scheme creates two issues, “ghosting” 
and “masking”, when multiple pairs of column and row 
wires are connected at the same time, which creates 
ambiguous key presses. “Ghosting” refers to a key press 
being incorrectly reported even when it is not pressed, due 
to multiple other keys being pressed simultaneously 
(usually more than three keys) that short circuit the column 
and row wires underneath the “ghosting” keycap; and 
“masking” refers to the pressing and releasing of the 
“ghosting” key not seen by the keyboard controller, which 
considers the “ghosting” key to be always pressed. 

The “ghosting” and “masking” phenomena can be avoided 
by using diodes, which prevents the wires from being 
shorted via other pressed keys. However, this mechanism is 
still absent in most keyboards. For GestKeyboard to be 
usable for as large an audience as possible, we decide to 
focus on single-finger gestures to avoid the ghosting and 
masking effect, since a single finger is less likely to press 
more than three keys simultaneously. 

Keyboard Events 
In most operating systems, a keyboard event encapsulates 
information about one single change of the keyboard state, 
which includes the timestamp that change occurs, the 
keycap that change involves, and the type of that change. 
The time is often in milliseconds or microseconds, the 
keycap is often uniquely identified with a scancode, and the 
type can be press, release, or repeat of that keycap. 
Although much of the details are system and hardware 
dependent, this generic model of keyboard event suffices 
for our discussion of GestKeyboard. 

Keyboard Geometry 
To capture spatial movement on a keyboard for gesture 
detection, we model two aspects of a specific keyboard: the 
bounding box of each keycap relative to the top-left corner 
of the keyboard and the binary adjacency between keycaps. 
By modeling the keyboard geometry, we are able to 
calculate various features that are useful for gesture 
detection and recognition. For example, we can calculate 
the shortest distance between two consecutive key press 
events. Due to the existence of large keycaps such as the 
space bar or the “+” key on the numeric pad, the shortest 
distance between two keycaps cannot be simply calculated 
as the distance between their centers. Instead, we first “thin” 
each keycap as a line segment and then calculate the 
shortest distance between segments (see Figure 2). 

 
Figure 2: Centroid distances (red line) versus segment-

segment shortest distance (blue line) for non-square keys 
such as the space bar (“thinned” as the black line). 



RESEARCH PROBLEMS 
There are two important aspects of the problem. First, we 
need to understand how users would perceive gesturing on 
a physical keyboard regarding its usefulness and usability 
including the ergonomic issues. Second, we need to address 
the technical challenges regarding gesture detection and 
classification to yield a usable system. 

User Perception on Keyboard Gestures 
As we introduce gesturing as a new behavior to the 
keyboard, it is important to understand how users perceive 
its usefulness and what potential applications or interaction 
scenarios are for keyboard gestures. We hope to understand 
if it is feasible to use a physical keyboard as a gesture 
articulation device ergonomically. A keyboard does not 
offer a smooth surface and is not as easy or comfortable as 
a touchscreen or touchpad for sliding fingers above it. If a 
user presses her finger heavily, it is difficult to slide it 
across keys but if a user does so lightly, keys might not be 
registered and a trajectory will not be captured completely.  

Gesture Detection & Classification 
Due to limited spatial resolution of keys on a keyboard and 
possible sensor failures such as ghosting and masking of 
keys, we focus our research on single-finger unistroke 
gestures and assume that typing and gesturing occur in an 
interleaved way but not in parallel.  

Both regular keyboard uses such as typing and keyboard 
shortcuts and gesturing produce keyboard events, with 
unobvious differences, and they can be highly interleaved. 
To allow a user to freely transition between these two types 
of behaviors without explicit mode switching, we need to 
determine if the user is gesturing from a stream of keyboard 
events—the gesture detection issue. Our solution needs to 
meet two criteria. 

To not interfere with the major function of the keyboard--
text entry and shortcut activation, our detection algorithm 
needs to be highly accurate. Missing a gesture—false 
negatives—would result in unintended operations such as 
gibberish characters entered as text and unintended hotkey 
combinations invoked that changes the system behavior. 
Capturing a gesture mistakenly—false positives—would 
lead to unresponsive interfaces, e.g., typed characters do not 
appear in a text editor, or unintended gesture execution. 

In addition to accuracy, a related issue is the decision 
latency, i.e., the time needed for reliably detecting a gesture 
occurrence. For example, the user expects to see typed text 
to appear in a text editor with as little latency as possible. 
As a result, the detection algorithm should try to reject 
gesturing as early as possible, to allow for normal 
dispatching of keyboard events as for typing, of course, 
without missing intended gestures. 

Once a gesture occurrence is detected, we need to recognize 
the gesture for invoking corresponding actions, given a 
sequence of keyboard events that are identified by the 
gesture detection phase. We currently focus on a template-

based recognition approach that matches an unknown 
gesture against a predefined gesture set, because the 
approach is easy to implement and highly customizable.  

We intend to find out if the low resolution of spatial 
trajectories captured by the key events would hamper the 
recognition accuracy. Because we aim at supporting both 
directional (e.g., sliding downwards for scrolling down) and 
symbolic gestures (e.g., “?” for help), which are useful for 
assisting common interaction tasks, we need to enhance 
existing template-based recognizers to support both types of 
gestures. 

USER STUDY 
We started our exploration by conducting a user study, to 
understand user behaviors and perception on keyboard 
gestures and to collect training data for gesture detection 
and classification. To facilitate our investigation, we 
selected a set of 16 target gestures by adapting a previous 
gesture set [13] (see Figure 3). In particular, we try not to 
include gestures with complex trajectories that can be 
inappropriate for a low-resolution gesture-sensing device—
the physical keyboard.  

Note that both directional and symbolic gestures are 
included in the gesture set. In particular, the four straight 
gestures are sequence-sensitive, e.g., if the articulation 
direction of the two horizontal gestures is reversible, they 
would become indistinguishable. The remaining (symbolic) 
gestures in the set are sequence-invariant. For example, a 
circle gesture should allow for both clock-wise and counter 
clock-wise articulation sequences.  

 
Figure 3: The proposed gesture set. 

Keyboard Conditions 
We expect the physical form of different keyboards to be an 
important factor for the applicability of GestKeyboard. On 
keyboards with a large vertical travel distance (the height of 
a key) and rugged keycap profile, such as the HP SK-2880 
keyboard (Figure 4-a), sliding the finger on the keyboard 
would require the finger to laterally squeeze against the 
sharp edge of the keycap, in order to activate the keys along 
the path of the gesture. Performing a gesture on this kind of 
keyboard might induce uncomfortable physical experience 
and hinder speed and accuracy. In contrast, gesturing might 
be easier and more comfortable on keyboards with a small 
travel distance and smooth keycap profile, such as the 
Apple MB110LL/B Keyboard (Figure 4-b). 

To observe the effect of different keyboards on gesturing 
experiences, we used two types of keyboard in our study, 



the HP SK-2880, representing the mainstream PC 
keyboards (thereafter referred as full-size keyboards), and 
the Apple MB110LL/B, representing the keyboards 
commonly found in laptops and Mac computers (thereafter 
referred as compact keyboards). 

a) HP SK-2880 keyboard (“full-size” keyboard) 

b) Apple MB110LL/B keyboard (“compact” keyboard) 

Figure 4: The two types of keyboards used in our study. 

Experimental Tasks & Procedures 
We recruited 10 participants (2 females and 8 males, all 
right-handed, aged between 19 and 40, M=27). The 
participants had a various background including software 
engineers, project managers and attorneys. Half of the 
participants used full-size keyboards primarily, while the 
other half used compact keyboards more often.  

To understand how the key events generated by gesturing 
on the keyboard are different from those by regular usage, 
our experiment involves two tasks: gesturing and typing. 
For brevity, we use typing to refer to regular uses of 
keyboard such as text entry using alphanumeric, 
punctuation, and the space keys and key combinations 
served as shortcuts, such as Ctrl+C/Ctrl+V for copy/paste, 
and meta characters, such as delete, home/end keys, and 
platform-dependent meta keys such as Macintosh’s 
Command key. Each participant was asked to use both 
types of keyboard for typing and gesturing. The order of the 
keyboard use is counterbalanced. In each keyboard 
condition, a participant first completed a typing task and 
then a gesturing task.  

Our typing task captures a typical text entry scenario. 
Participants were asked to type a plain-text document in 
English, and then follow the instructions to stylize the 
document using various keyboard shortcuts (see Figure 5). 
Participants were instructed to complete the typing task as 
naturally as possible, with their natural typing speed and 
shortcut habit, e.g., the preferred modifier location such as 
left versus right “Shift” key and the landing order in a key 
combination such as Ctrl+Alt+Del versus Alt+Ctrl+Del. 

The typing task used a different document (with a similar 
complexity) in each keyboard condition such that 
participants do not enter the same document twice. Each 
document had about 1000 characters that involved about 50 
unique characters and 4 different formatting styles from a 
set of bold, italic, hyperlink, center-aligned, underline and 
right-aligned. We provide a cheat sheet of 14 shortcuts for 
text editing and formatting to the participants. 

 
Figure 5: An example of our typing task. 

In the gesturing task, participants were asked to perform 
keyboard gestures, by following an on-screen stimulus that 
shows one of the 16 gesture in Figure 3. Participants were 
informed that the presentation of the gesture in the stimuli 
is for the illustration purpose only, and they should perform 
the gesture in the way they are most comfortable with, 
regarding the size, speed, and location of the articulation on 
the keyboard. The visual presentation of the gesture is 
hidden once participants start gesturing to refrain them from 
precisely replicating the gesture. Participants were allowed 
to redo a trial if a mistake happens. The occurrence of the 
16 target gestures is randomized with five repetitions for 
each gesture in total.  

Experimental Apparatus 
A desktop computer with Intel i7 processor and 16G RAM 
running Ubuntu 12.04 LTS operating system was used in 
the study. A low-level key logger recorded all the keyboard 
events throughout the study by reading from the 
/dev/input/event* file, which Linux uses to expose input 
events. The timestamps for the beginning of each trial and 
gesture stimuli were recorded, which allow us to segment 
and label the continuous keyboard event stream as chunks 
of typing and gesturing data as well as corresponding 
gesture categories in post processing.   

Results 
In total, we collected 1600 gesture samples (10 participants 
x 16 gestures x 5 repetitions x 2 keyboards), from which we 
excluded 6 samples that participants mistakenly entered 
(clearly belong to other categories).  

We conducted a paired two-sample T test on the task 
completion time. On average, a typing task took 4162 
seconds (SD=142 seconds) on the full-size keyboard, and 
4607 seconds (SD=162 seconds) on the compact keyboard. 
t(9)=3.0, p=0.015. In contrast, for gesturing, the compact 
keyboard allowed a significantly faster gesture articulation 
speed (M=768ms, SD=385ms) than the full-size keyboard 



(M=979ms, SD=604ms), t(9)=2.941, p=0.016, after log-
transformation. The effect of keyboard conditions on the 
number of key presses generated from each gesture is not 
significant (p>0.05), with a mean of 10.2 keys, SD=4.2 (see 
Figure 6), which roughly reflects the resolution of these 
keyboards on sensing gestures. 

 
Figure 6: The distribution of the number of key press events 

generated from each gesture. 

Gesture Articulation Characteristics. To understand how 
participants perform these gestures on the keyboard, we 
analyzed the articulation characteristics of the gesture 
samples. Although the four straight-line gestures have a 
designated direction, we deliberately left the articulation 
direction of the rest gestures undefined. For example, a 
circle can be drawn in either a clockwise or a counter 
clockwise fashion. This gives us an opportunity to observe 
users’ preferences in performing these gestures on a 
physical keyboard. 

We model the profile of gesture articulation direction by 
projecting each gesture stroke segment (a primitive finger 
motion as sensed by the keyboard) of collected samples 
onto three separate dimensions: horizontal, vertical and 
angular. For example, in the horizontal dimension, a 
movement can be left to right, right to left or no movement. 

We found that gesturing tended to involve more left-to-right 
(59.4%) than right-to-left motion (40.2%), more downward 
(31.9%) than upward motion (21.3%) and more clockwise 
(58.9%) than counter clockwise motion (34.3%). Because 
all the participants in the study were right-handed, this 
observation implied that the participants preferred to 
contact the keycaps using the soft finger pad, instead using 
the tip or back of the finger. 

We observed that the participants adopted various 
alternative articulation strategies in performing the gestures, 
such as using the soft pad on the tip of the index finger for a 
downward gesture, and using the back of the nail for an 
upward gesture. Several participants used the non-gesturing 
hand to hold the keyboard for stabilization while gesturing, 
while others completed the gestures single-handedly.  

These observations have several implications for designing 
a keyboard gesture set. First, since participants tend to use 
their finger pad in most cases, it is important to have 
handedness in mind. For example, a left-to-right straight 

gesture might be easy for right-handed users, but 
uncomfortable for left-handed users. Second, it is advisable 
to design for gestures without much curvature in the path, 
since curvature would require the use of different parts of 
the finger to perform the gesture, which could be less 
comfortable. Third, some gestures might be easier to 
perform with alternative articulation strategies, such as 
using the thumb. It is useful to make users aware of these 
alternative strategies for increased performance and comfort. 

Subjective Feedback. We solicit the feedback from 
participants to understand their perspective on the potential 
use of gesturing on the keyboard. Overall, the participants 
were excited about being able to issue gestures on a regular 
keyboard. In particular, the participants suggested several 
scenarios where GestKeyboard can be useful, such as 
shortcuts for editing a document while in a rush, web 
navigation using directional gestures (e.g., backward or 
forward) and shortcuts for launching specific applications. 
This feedback inspired us to develop two applications to 
showcase GestKeyboard that we will discuss later. 

All the participants preferred using the compact keyboard 
over full-size keyboard. They felt that they were more 
accurate, more comfortable, and less frustrated when 
performing gestures on the compact keyboard, which is 
consistent with the gesture completion time we discussed 
earlier. Two participants felt that these keyboard gestures 
will shoulder part of functionality of existing keyboard 
shortcuts. In particular, keyboard gestures can be performed 
in an eye-free fashion. 

DETECTING GESTURE OCCURRENCES 
Because we intend to allow users to switch between 
gesturing and typing without explicit mode switching, we 
need to detect the occurrence of a gesture from a continuous 
stream of keyboard events. A naïve strategy is to assume 
every key event to be a potential start of a gesture. However, 
this will require us to run gesture detection on every key 
event that induces a constant overhead for event processing. 
Instead, we view the event stream as a sequence of typing 
and gesturing segments and between two consecutive 
segments, the keyboard is idle, i.e., no key is pressed for a 
certain interval. Ideally, the “heavy-lifting” of executing the 
detection algorithm should only happen at the start of each 
segment. Once the segment type is determined to be typing 
or gesturing, the subsequent keyboard events can simply 
carry the same segment type and be dispatched immediately 
until another idle stage occurs. Therefore, our first task in 
gesture occurrence detection is to segment the event stream. 

Segmenting the Keyboard Event Stream 
We segment a keyboard event stream based on if the idle 
stage before a new event (signals the start of a segment) or 
after the previous event (signals the end) is larger than a 
certain interval. Based on the gesturing data collected from 
our user study, on average, a gesture contains 3.7 idle 
stages for the full-size keyboard, and 2.5 for the compact 
keyboard. Based on the cumulative distribution of all idle 



durations (see Figure 7), we use the duration value at the 99% 
cut-off point on the empirical CDF as the timeout interval, 
which turns out to be 420ms for the full-size keyboard and 
120ms for the compact keyboard—only 1% of the idle 
stages would lead to incorrect segmentation. 

 
Figure 7: The empirical Cumulative Density Functions of 
intra-gesture idle durations. Inset shows the 99% cutoff. 

These acquired timeout intervals will be applied to a 
continuous event stream at runtime for identifying the 
starting point of a segment and invoking gesture occurrence 
detection algorithms. For our offline analysis, we use these 
timeout intervals to segment the typing data into chunks, 
which are served as negative samples for training a gesture 
occurrence detector. Applying the timeout intervals on 
typing data results in 1,493 typing samples for the full-size 
keyboard, and 2,327 samples for the compact keyboard. 

Creating a Gesture Occurrence Classifier 
With the typing and gesturing samples generated in the 
previous steps, our gesture detection task reduces to a 
binary classification problem. To create an efficient 
classifier, we first look into various features that 
characterize gesturing versus typing behaviors, including 
both spatial and temporal aspects. 

Keystroke Transition Distances 
One obvious observation about gesturing on a keyboard is 
that consecutive keystrokes (key presses) in the stream tend 
to be close in distance, as the fingers slide across keys. In 
contrast, two consecutive keystrokes in typing can be quite 
distant on the keyboard depending on the target word or 
shortcut being entered.  

To capture this difference, we look at both the mean 
distance MK between consecutive keystrokes and its 

variance for the K keystrokes that have been observed so far 
in an unknown segment: 
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where Ei is the keycap name of the ith keystroke on the 
keyboard, and function D(Ei-1 , Ei) returns the segment-to-
segment shortest distance between two keycaps, based on 
the specific keyboard geometry (see Figure 2). The variance, 
VK, is in turn calculated as: 
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At this point, we can directly use these features to 
participate in the process for training a gesturing-typing 
classifier, based on our data. However, our typing data, 
from the two typing tasks in the study, is hardly inclusive 
for describing all possible keystroke transitions in day-to-
day typing behaviors. To address this issue, we used an 
English language model (http://invokeit.wordpress.com/) to 
synthesize the typing data that can better reflect keystroke 
transitions in typing based on the follow procedure.  

We start with the N-gram-frequency pairs from the 
language model, where the value of N ranges from 2 up to 5. 
Then for each N-gram, we generated the corresponding 
keystroke sequences. It is possible that an N-gram could be 
entered in multiple ways, due to alternative modifier key 
locations. For instance, either of the two “Shift” keys might 
be used to enter uppercase letters such as “A” or “?” 
character. Lacking empirical data on the probability of such 
alternative keystroke sequences, we simply generated all 
possible keystroke combinations for each N-gram with an 
equal frequency, summing up to the N-gram frequency. 
Finally, for each such synthesized keystroke sequence, we 
computed the mean distance and variance for the first K 
keys—K ranges from 2 to 5.  

Note that the synthesized dataset is only useful for 
capturing keystroke transitions and it lacks other properties 
of the behavior that can only be observed in actual typing, 
such as temporal aspects. As a result, we only use the 
synthesized dataset to determine an optimal threshold for 
MK and VK, to discretize these features. We also computed 
MK and VK for K from 2 to 5 for each gesture sample from a 
dataset that we collected for the 16 gestures in a pilot 
study—that is separate from the user study reported earlier. 

For each K, we want to determine an optimal threshold that 
can best separate gesturing from typing based on MK or VK. 
We achieve so through an ROC (Receiver Operating 
Characteristic) analysis on MK and VK for gesturing and 
synthesized typing (see Figure 8 for MK for the compact 
keyboard). Note that each typing MK and VK is weighted 
based on the frequency of their originating N-gram in the 
ROC analysis. Based on these thresholds, we discretize MK 
and VK as 𝑀𝑘

′  and 𝑉𝑘′ by assigning 1 if they are above their 
threshold and 0 otherwise. 

 
Figure 8: The ROC curves for mean keystroke distances 

for gesturing on the compact keyboard. 



Adjacency Rates 
Following on the keystroke transition distance feature 
family, we look into a similar but different aspect—the 
adjacency of two consecutive key presses. Note that two 
keystrokes that are spatially close are not necessarily 
adjacent. It is noticed that for gesturing, consecutive key 
press events often happen for adjacent keys on the keyboard, 
whereas it is not the case for typing. This spatial 
characteristic is captured as the adjacency rate, AK, for the 
first K key press events in a sequence: 
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where Ei is the same as Equation 1, and Adji-1 is the set of 
keycaps adjacent to the keycap of the i-1th key press event, 
which is acquired from the keyboard geometry. The 
numerator therefore denotes the number of pairs of 
consecutive key press events that are also spatially adjacent 
in the first K key presses. Note that a keycap should not be 
considered adjacent to itself: we expect gesturing to have a 
high adjacency rate and repeatedly pressing the same 
keycap, which is rare in gesturing but common in typing, 
should not increase the adjacency rate. 

Revisitation Rates 
Typing frequently involves the repetition of the same key, 
such as the space bar, or highly recurrent letters such as 
letter “e” in “succeeded”. Gesturing, in contrast, rarely 
involves revisiting previously pressed keys—only when a 
gesture stroke intersects itself, e.g., the pigtail gesture. The 
keycap revisitation rate, RK, is defined as the number of 
unique keycaps in the first K keystrokes of an unknown 
segment over the total number of keystrokes, i.e., K. 

Idle Rates 
Lastly, we observed that the keyboard is hardly ever at an 
idle state while gesturing, since the fingers would remain 
pressed on some keys. However, the dominant pattern for 
finger motion while typing is discrete striking of keycaps 
that presses and releases a keycap in a short time interval. 
This temporal characteristic is captured as the percentage of 
time that the keyboard is idle—the idle rate, IK—during the 
first K key presses. 

Combining Individual Features 
Consider features generated from the same featurization 
process but for different K values a feature family. With the 
five feature families, 𝑀𝑘

′ , 𝑉𝑘′ , AK, RK, and IK, with K 
ranging from 2 to 5, a total of 20 features (4 lengths x 5 
feature families) are computed for each sequence segment. 
If a segment contains fewer than K key press events, the 
feature 𝐹𝑘,  𝐹 ∈ {𝑀′,𝑉′,𝐴,𝑅, 𝐼}, is assigned a default value 
-1, to indicate a missing value. 

Based on these features, we used the C4.5 decision tree of 
WEKA to predict if an unknown segment is gesturing or 
typing from the 2nd to the 5th key press event since the start 
of a sequence, a separate binary decision tree model is 
trained for each, using all available features up to that event.  

Because segmented typing samples are significantly more 
than the gesture samples for each keyboard condition from 
our user study, we balance the dataset by duplicating 
gesture samples to roughly have the same size as the typing 
samples. Based on this dataset, we tested each model with a 
10-fold cross-validation. Figure 9 shows the mean accuracy 
for each individual feature family and for the decision tree 
combination of them. 

 
Figure 9: The detection accuracy for the full-size and the 

compact keyboard for the number of key press events used. 

The results clearly show that adjacency rates (AK) and mean 
keystroke distances (𝑀𝑘

′ ) are the more discriminative than 
other feature families. They require as few as two key press 
events to achieve over 85% accuracy. Idle rates (IK) also 
consistently performed well. Combining all the five feature 
families with the decision tree outperformed each 
individual feature family with 94% accuracy based on only 
2 key press events. By using 5 key press events and 
combining all the feature families, the decision tree reaches 
99.5% and 98.9% accuracy on the compact and full-sized 
keyboard, respectively. 

In terms of overall accuracy, using the full-size keyboard is 
almost as accurate as using the compact keyboard, which 
suggests the generalizability of the proposed features for 
different types of keyboard. One interesting observation is 
that, the type of keyboard has a more significant effect on 
the accuracy of the idle rate feature family than on other 
feature families. This phenomenon may be due to the large 
spacing and vertical travel distance for the full-size 
keyboards, which results in more idle stages even when 
gesturing, making it less distinguishable from typing. 

Making Time-Sensitive Decisions 
In the online situation, as keyboard events come in, our 
gesture detector should make a decision about if the user is 
gesturing or typing as soon as possible and at the same time 
minimize decision mistakes. The gesture detector is capable 
of making a decision once it sees two key press events, 
however, it needs to balance if it should make the decision 
now or wait until more events are observed.  

A decision tree can give a confidence value for its 
classification result, and we need to determine an 
appropriate confidence threshold for accepting or ignoring a 
classification result. Although more events will lead to 
better accuracy (see Figure 9), it is important for the 
detector to resolve within a certain time limit. In addition, 
since keyboard events come in at an unexpected interval, 



which is not time-bounded, we need to impose a resolution 
timeout in our decision process, i.e., if a resolution timeout 
is reached, the sequence is force-resolved to typing. For a 
given confidence threshold and resolution timeout, it is 
necessary to understand the performance of the gesture 
detector, with respect to elapsed time since the start of the 
sequence (see Figure 10). 

 
Figure 10: The detection accuracy for different resolution 

timeouts and confidence thresholds on the compact keyboard. 

Each resolution timeout bounds the worst-case latency from 
the user starting to type to seeing the actions permanently 
committed to the system. We select 200ms resolution 
timeout and the 0.96 confidence threshold for our online 
detection process. This setting achieves 95% detection 
accuracy on both types of keyboard—on average 1 in every 
20 detections is wrong, either a gesture sequence is detected 
as typing, or vice versa. Note that the 200ms latency only 
occurs when detection is triggered—a timeout followed by 
a keystroke, and could be reduced to tradeoff accuracy for 
responsiveness of the system. 

RECOGNIZING GESTURES 
Upon identifying a gesturing segment from the keyboard 
event stream, we need to recognize the gesture. We first 
transform the keyboard events of the segment to a sequence 
of timed 2D coordinates and then classify the sequence with 
a template-based recognizer adapted from previous work. 

If we consider each keycap as a binary sensor with two 
possible states: pressed or released, a keyboard event 
essentially describes a state change of one of these binary 
sensors. A key press or release event triggers the transition 
from one state to another, and a key repeat event has no 
change in the pressed state. In turn, the entire keyboard can 
be viewed as a low-resolution sensor array. Each individual 
sensor could be of large and irregular shapes. We use the 
keyboard geometry—the bounds of each keycap relative to 
the top-left corner of the keyboard—to transform a 

keyboard event stream into a timed 2D trajectory, i.e., an 
approximation of the finger's trajectory. 

We maintain a set of currently pressed keys to reflect the 
current “footprint” of the user fingers, which is initially 
empty as we always start from an idle stage. Whenever a 
press or release event occurs, we add the key to the set or 
remove it from the set. For each update, we calculate the 
centroid of the footprint, C, as the following: 

∑
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where pi is the bounding box center of the ith keycap in the 
footprint key set, and ai is its bounding box size. The 
centroid along the timestamp of the key event is appended 
to a 2D trajectory (see Figure 1). 

We employ Protractor, a template-based gesture recognizer 
[9] for recognizing an acquired 2D trajectory, which 
matches a 2D trajectory against a set of templates. 
Protractor allows a developer to configure how sensitive the 
recognizer should be to orientation variation of a gesture. 
Because our gesture set involves gestures that would be 
indistinguishable from each other without considering 
orientation, e.g., four straight lines or gesture “M” versus 
“W”, we set Protractor to be orientation sensitive. 

Although several gestures in our target set are irreversible 
such as straight lines, many of our gestures are reversible, 
e.g., gesture “M” can be drawn from left to right or right to 
left. We could ask participants to perform additional 
gestures to capture both articulation directions. However, 
this would lengthen the study time and increase user fatigue 
and frustration. Instead, for each sample of a reversible 
gesture, we synthetically add its reverted trajectory to the 
template set. This allows the recognizer to support both 
types of gestures simultaneously without needing additional 
data. To find out the recognition accuracy of these keyboard 
gestures, we conducted a cross-validation splitting on 
participants—picking one participant’s data for training and 
the rest 9’s for testing and repeating the process for each 
participant. For each round, we varied the number of 
templates (training samples) from 1 to 5 and the number of 
target gesture categories (classes) from 2 to 16 (see Figure 
11). Gesturing on the compact keyboard seems to be more 
accurate (M=95.3%, SD=2.5%) than on the full-size 
keyboard (M=94.5%, SD=2.6%), t(df=74)=9.260, p<0.005. 
For the most difficult classification condition (16 target 
gestures and 1 template gesture), the accuracy is 89.3%. 
When 5 templates per class is used to classify the 16 
gestures, the accuracy is significantly increased to 92.2%. 
These results indicated that it is feasible to sense gestures 
on a physical keyboard. 

EXAMPLE APPLICATIONS 
We developed two applications using GestKeyboard: one 
allows a user to invoke applications anytime and the other 
allows a user to edit text, using GestKeyboard gestures. Figure 11: The recognition accuracy for each keyboard. 



System-Wide Deployment: GestRun 
We developed an application launcher, named “GestRun” 
(see Figure 12), as a system-level service. Without going to 
a specific application (or the Desktop screen), a user can 
launch an application anytime, by performing a keyboard 
gesture. We leveraged shape mnemonics to ease learning of 
the gestures, such as the “circle” gesture for the Chrome 
browser, the “rectangle” gesture for terminal and gesture 
“V” for the Vim editor. GestRun provides a system-wide 
access to common applications, without consuming screen 
estate or requiring long click-throughs or search to find a 
specific application. 

 
Figure 12: The GestRun application launcher. The recognized 
gesture is shown above the corresponding application for the 

illustration purpose. 

Application Specific Deployment: GestEdit 
We also used GestKeyboard to enhance text editing. We 
developed GestEdit that allows a user to use keyboard 
gestures for common styling tasks (see Figure 13), such as 
vertical swipes for super or subscripting, and angle gestures 
for font style manipulation. Many of these styling 
operations have no shortcuts defined in existing text editors.  

In case a user is unsure which gesture to use, the user can 
pause the articulation by holding down the current keys. 
After a short dwell time (e.g., 500ms), an in-place popup 
menu is shown to present the gesture set and associated 
functions. At this point, the user can continue sliding her 
fingers to finish the target gesture. Alternatively, the user 
can cancel the ongoing gesture by pressing a key that is not 
adjacent to the current footprint,  

GestEdit also leverages in which area of the keyboard a 
gesture is performed and invokes different functions for 

each area, e.g., the straight-line gestures map to alignment 
functions if they are performed on the numeric keypad. 

LIMITATIONS AND FUTURE WORK 
GestKeyboard allows a user to perform a set of useful 
gestures on a regular physical keyboard that is equipped on 
every desktop and laptop computer. However, the ghosting 
and masking effect with most existing keyboard hardware 
prevents us from exploring gestures that require multiple 
simultaneous touch points, such as multi-touch or shape 
gestures [10]. In particular, shape gestures such as rolling 
the palm or fist across the keyboard can be easier to 
perform than stroke gestures that involve lateral friction.  

Before gesture detection is resolved, there are two options 
to process the key events that have occurred for an 
unknown segment. GestKeyboard can hold on these events 
until the decision is made, and then dispatch them as well as 
the following events to either typing or gesturing, which 
continues until another segmentation timeout occurs and 
gesture detection is invoked again. This would incur a 
maximum of 200ms latency in interaction. Alternatively, 
GestKeyboard can dispatch each event right away but at the 
same time inform the application GestKeyboard has not yet 
made a decision. This removes the latency but shoulder the 
effort for handling uncertainty to application developers. 

GestKeyboard itself is currently implemented as an 
application based on Linux. It is more appropriate for it to 
run at the core of keyboard event processing in the 
operating system, to take full control of the keyboard status. 
It is also worthwhile to implement GestKeyboard in a web 
environment, e.g., as a browser plugin so that it becomes 
instantaneously available to user on various computing 
devices that have a physical keyboard. 

One important component in GestKeyboard is the keyboard 
geometry about the bounds of each key on the keyboard, 
which is often keyboard-specific. To automatically extract 
the geometry from a keyboard, we can potentially use 
computer vision and OCR to recognize each keycap from a 
photo of the keyboard. 

Aside from the technical aspect, GestKeyboard’s 
practicality should be further examined in the context of 
existing shortcut mechanisms, particularly in comparison 
with hotkeys. Keyboard gestures that are enabled by 
GestKeyboard have several potential advantages, including 
eye-free interactions, easy to learn and flexible to perform. 
Performing these gestures does not require the user to adapt 
for the specific keyboard layout or semantic designations of 
the modifier keys, which tend to significantly impact how a 
user performs hotkeys. Future research on these 
characteristics of keyboard gesture would provide direct 
implications on the usage scenario for GestKeyboard and 
further reveal the advantage and shortcomings of keyboard 
gestures. 

RELATED WORK 
Using physical key presses to sense trajectories has briefly 

 
Figure 13: The gesture commands used in GestEdit. 



been demonstrated previously. Jannotti [5] presented a 
scheme to simulate the shape of characters on the numeric 
keypad for text entry on a reduced keypad such as a TV 
remote. EdgeWrite uses four keys (arranged as a square) to 
capture spatial sequences for text entry [12]. All this prior 
work inspired us to explore gesturing on a physical 
keyboard in depth. 

Extensive work has been conducted on gesturing on a soft 
keyboard for text entry based on a touchscreen or a stylus-
enabled surface [14]. Although relevant, our work is vastly 
different because we focus on a different sensing device—
an ordinary physical keyboard, which raises different 
challenges. For example, separating gesturing and typing on 
a touchscreen keyboard would be trivial because a 
touchscreen provides a much higher resolution than a 
physical keyboard does. 

Traditional computing devices, such as a desktop or laptop 
computer, enabled limited gesture behaviors. For example, 
Apple MacBook allows a user to bring up Expose 
(windows overview) through a three-finger swipe gesture 
on the trackpad. However, stroke gestures are generally not 
supported on traditional computing devices that lack a 
dedicated gesturing device. 

Previously, various efforts have been devoted to 
augmenting a keyboard with additional hardware [1][2][3]. 
In particular, the Pressure-Sensing Keyboard [3] is 
manufactured with additional press sensors in imprinting 
but its spatial resolution is unchanged. Touch Display 
Keyboard [2] enable flexible ways of using the keyboard, 
such as reassigning the keyboard functions or changing 
keyboard layout, by augmenting the keyboard with 
capacitive touch sensors and a projector instrumented in the 
environment. Actuated Keys [1] augments existing hotkey 
behaviors by mechanically raising keycaps when a modifier 
key is pressed. All this work did not focus on gesture 
articulation on the keyboard. In contrast, we aimed at 
enabling stroke gestures on existing unmodified keyboards. 

CONCLUSION 
We present GestKeyboard, a novel technique for gesture-
based interaction on an existing physical keyboard, without 
any additional hardware or modification. It does not 
interfere with existing keyboard usage and allows a user to 
switch between the regular usage—typing or performing 
hotkeys—and gesturing in a modeless way. Based on a user 
study with 10 participants, we explored various 
characteristics about gesture articulation on a physical 
keyboard. We contributed a set of algorithms for detecting 
gesture occurrences. In particular, we designed features that 
can effectively separate gesturing from typing by using 
typing behaviors synthesized from a language model. 
GestKeyboard is able to detect gesturing from regular 
typing, with 95% accuracy with a maximum latency of 
200ms. Based on the experiment as well as two applications 
using GestKeyboard, we found gesturing on a regular 
physical keyboard is useful and feasible. 
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