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Figure 1: Gesturing on a physical keyboard. The green overlays show the keys that have been pressed and the red ones show the
currently pressed keys. The red line running across keys illustrates the captured gesture stroke.

ABSTRACT

Stroke gestures are intuitive and efficient but often require
gesture-capable input hardware such as a touchscreen. In
this paper, we present GestKeyboard, a novel technique for
gesturing over an ordinary, unmodified physical
keyboard—that remains the major input modality for
existing desktop and laptop computers. We discuss an
exploratory study for understanding the design space of
gesturing on a physical keyboard and our algorithms for
detecting gestures in a modeless way, without interfering
with the keyboard’s major functionality such as text entry
and shortcuts activation. We explored various features for
detecting gestures from a keyboard event stream. Our
experiment based on the data collected from 10 participants
indicated it is feasible to reliably detect gestures from
normal keyboard use, 95% detection accuracy within a
maximum latency of 200ms.
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INTRODUCTION

Gesture-based interaction is intuitive and efficient for many
interaction tasks, and has become a promising interaction
modality on various new-generation devices such as
smartphones, tablets and tabletops. However, gesture-based
interaction has not seen significant adoption in traditional
computing environments and devices such as desktop
computers or laptops. One important reason is that either
traditional devices lack appropriate gesturing input
mediums or existing input devices have been occupied for
other purposes.

Existing work that enables gesture-based interaction on a
traditional computing device usually introduces additional
hardware [6][8][11]. Although it is possible to use existing
path-making devices such as a mouse or a trackpad for
gestural input, an explicit mode switch is often required to
disambiguate the gestural input from other uses of these
devices such as target acquisition.

In this paper, we present GestKeyboard, a technique that
allows a user to perform gestures on an ordinary, physical
keyboard. It requires no additional hardware, allows
modeless switching between gesturing and the designed use
of a keyboard—text entry and shortcut activation, and
reduces homing effort—users can complete many tasks
without having their hands to leave the keyboard switching
to other input devices.

Previously, physical keyboards have been augmented with
additional sensors for various purposes such as pressure-
sensing [3] or touch display keyboards [2], and gesture
support on keyboards has not been the focus of prior work.
In contrast, we intend to enhance a regular keyboard for
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gesture input with no physical modification or additional
hardware. Our basic idea is straightforward. We view each
key on the keyboard as a binary sensor that tells if a key is
pressed, and the entire keyboard as an array of such sensors.
By tracking when each key is pressed and released, we can
recover a low-resolution trajectory of finger movement on
the keyboard that can be fed to a gesture recognizer for
interpretation.

However, enabling such a gesturing capability is not
without challenges. The keyboard provides a limited spatial
resolution and when sliding the finger on the keyboard, key
events are often noisy. For example, not every key on the
finger travel path is registered and a key press might
generate multiple events. In addition, we need to quickly
differentiate gesturing from regular keyboard uses
especially text entry. In this paper, we contribute the
following:

e A user study for understanding gesturing and regular
keyboard behaviors and soliciting subjective feedback
on gesturing on the keyboard;

e A method for detecting gesturing from typing on the
keyboard that achieves high accuracy (95%) within
reasonable latency (maximally 200ms);

e A process for transforming a keyboard event sequence
into a spatial trajectory for gesture recognition and an
adaptation of a template-based recognizer;

e Two examples of GestKeyboard that demonstrate its use
at both the platform system and the application level.

In the rest of this paper, we first discuss the characteristic of
physical keyboards and clarify our research problems. Two
challenges in realizing GestKeyboard: gesture occurrence
detection and gesture recognition. We then describe our
user study, by which we collected user data for
investigating these problems as well as acquiring user
feedback on the usefulness of keyboard gestures. Next, we
discuss our solutions and report their performance. We
present two applications of GestKeyboard and discuss its
limitation and future work. Finally, we discuss related work
and conclude the paper.

TECHNICAL PREAMBLE

We started our investigation by understanding our target
gesture sensing device—existing physical keyboards,
including its hardware characteristics, its event
representation and geometry that transforms an array of
binary events into a spatial trajectory.

Keyboard Hardware

Most keyboards detect key presses and releases via a matrix
of circuits [4][7], consisting of columns and rows of wires
that are not in contact with each other. Keycaps are located
at the intersections between column and row wires. When
pressed, the keycap would bring the respective column and
row wires into contact. The location of the key press is
therefore detected by successively setting a high voltage on
each column wire, and detecting the high voltage signal on

each row wire. This scheme creates two issues, “ghosting”
and “masking”, when multiple pairs of column and row
wires are connected at the same time, which creates
ambiguous key presses. “Ghosting” refers to a key press
being incorrectly reported even when it is not pressed, due
to multiple other keys being pressed simultancously
(usually more than three keys) that short circuit the column
and row wires underneath the “ghosting” keycap; and
“masking” refers to the pressing and releasing of the
“ghosting” key not seen by the keyboard controller, which
considers the “ghosting” key to be always pressed.

The “ghosting” and “masking” phenomena can be avoided
by using diodes, which prevents the wires from being
shorted via other pressed keys. However, this mechanism is
still absent in most keyboards. For GestKeyboard to be
usable for as large an audience as possible, we decide to
focus on single-finger gestures to avoid the ghosting and
masking effect, since a single finger is less likely to press
more than three keys simultaneously.

Keyboard Events

In most operating systems, a keyboard event encapsulates
information about one single change of the keyboard state,
which includes the timestamp that change occurs, the
keycap that change involves, and the type of that change.
The time is often in milliseconds or microseconds, the
keycap is often uniquely identified with a scancode, and the
type can be press, release, or repeat of that keycap.
Although much of the details are system and hardware
dependent, this generic model of keyboard event suffices
for our discussion of GestKeyboard.

Keyboard Geometry

To capture spatial movement on a keyboard for gesture
detection, we model two aspects of a specific keyboard: the
bounding box of each keycap relative to the top-left corner
of the keyboard and the binary adjacency between keycaps.
By modeling the keyboard geometry, we are able to
calculate various features that are useful for gesture
detection and recognition. For example, we can calculate
the shortest distance between two consecutive key press
events. Due to the existence of large keycaps such as the
space bar or the “+” key on the numeric pad, the shortest
distance between two keycaps cannot be simply calculated
as the distance between their centers. Instead, we first “thin”
each keycap as a line segment and then calculate the
shortest distance between segments (see Figure 2).
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Figure 2: Centroid distances (red line) versus segment-
segment shortest distance (blue line) for non-square keys
such as the space bar (“thinned” as the black line).
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RESEARCH PROBLEMS

There are two important aspects of the problem. First, we
need to understand how users would perceive gesturing on
a physical keyboard regarding its usefulness and usability
including the ergonomic issues. Second, we need to address
the technical challenges regarding gesture detection and
classification to yield a usable system.

User Perception on Keyboard Gestures

As we introduce gesturing as a new behavior to the
keyboard, it is important to understand how users perceive
its usefulness and what potential applications or interaction
scenarios are for keyboard gestures. We hope to understand
if it is feasible to use a physical keyboard as a gesture
articulation device ergonomically. A keyboard does not
offer a smooth surface and is not as easy or comfortable as
a touchscreen or touchpad for sliding fingers above it. If a
user presses her finger heavily, it is difficult to slide it
across keys but if a user does so lightly, keys might not be
registered and a trajectory will not be captured completely.

Gesture Detection & Classification

Due to limited spatial resolution of keys on a keyboard and
possible sensor failures such as ghosting and masking of
keys, we focus our research on single-finger unistroke
gestures and assume that typing and gesturing occur in an
interleaved way but not in parallel.

Both regular keyboard uses such as typing and keyboard
shortcuts and gesturing produce keyboard events, with
unobvious differences, and they can be highly interleaved.
To allow a user to freely transition between these two types
of behaviors without explicit mode switching, we need to
determine if the user is gesturing from a stream of keyboard
events—the gesture detection issue. Our solution needs to
meet two criteria.

To not interfere with the major function of the keyboard--
text entry and shortcut activation, our detection algorithm
needs to be highly accurate. Missing a gesture—false
negatives—would result in unintended operations such as
gibberish characters entered as text and unintended hotkey
combinations invoked that changes the system behavior.
Capturing a gesture mistakenly—false positives—would
lead to unresponsive interfaces, e.g., typed characters do not
appear in a text editor, or unintended gesture execution.

In addition to accuracy, a related issue is the decision
latency, i.e., the time needed for reliably detecting a gesture
occurrence. For example, the user expects to see typed text
to appear in a text editor with as little latency as possible.
As a result, the detection algorithm should try to reject
gesturing as early as possible, to allow for normal
dispatching of keyboard events as for typing, of course,
without missing intended gestures.

Once a gesture occurrence is detected, we need to recognize
the gesture for invoking corresponding actions, given a
sequence of keyboard events that are identified by the
gesture detection phase. We currently focus on a template-

based recognition approach that matches an unknown
gesture against a predefined gesture set, because the
approach is easy to implement and highly customizable.

We intend to find out if the low resolution of spatial
trajectories captured by the key events would hamper the
recognition accuracy. Because we aim at supporting both
directional (e.g., sliding downwards for scrolling down) and
symbolic gestures (e.g., “?” for help), which are useful for
assisting common interaction tasks, we need to enhance
existing template-based recognizers to support both types of
gestures.

USER STUDY

We started our exploration by conducting a user study, to
understand user behaviors and perception on keyboard
gestures and to collect training data for gesture detection
and classification. To facilitate our investigation, we
selected a set of 16 target gestures by adapting a previous
gesture set [13] (see Figure 3). In particular, we try not to
include gestures with complex trajectories that can be
inappropriate for a low-resolution gesture-sensing device—
the physical keyboard.

Note that both directional and symbolic gestures are
included in the gesture set. In particular, the four straight
gestures are sequence-sensitive, e.g., if the articulation
direction of the two horizontal gestures is reversible, they
would become indistinguishable. The remaining (symbolic)
gestures in the set are sequence-invariant. For example, a
circle gesture should allow for both clock-wise and counter
clock-wise articulation sequences.

straight left straight right rectangle

angleup angle down M
s i i i
angle left angle right pigtail

Figure 3: The proposed gesture set.
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Keyboard Conditions

We expect the physical form of different keyboards to be an
important factor for the applicability of GestKeyboard. On
keyboards with a large vertical travel distance (the height of
a key) and rugged keycap profile, such as the HP SK-2880
keyboard (Figure 4-a), sliding the finger on the keyboard
would require the finger to laterally squeeze against the
sharp edge of the keycap, in order to activate the keys along
the path of the gesture. Performing a gesture on this kind of
keyboard might induce uncomfortable physical experience
and hinder speed and accuracy. In contrast, gesturing might
be easier and more comfortable on keyboards with a small
travel distance and smooth keycap profile, such as the
Apple MB110LL/B Keyboard (Figure 4-b).

To observe the effect of different keyboards on gesturing
experiences, we used two types of keyboard in our study,



the HP SK-2880, representing the mainstream PC
keyboards (thereafter referred as full-size keyboards), and
the Apple MBI110LL/B, representing the keyboards
commonly found in laptops and Mac computers (thereafter
referred as compact keyboards).

a) HP SK-2880 keyboard (“full-size” keyboard)
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b) Apple MB110LL/B keyboard (“compact” keyboard)
Figure 4: The two types of keyboards used in our study.

Experimental Tasks & Procedures

We recruited 10 participants (2 females and 8 males, all
right-handed, aged between 19 and 40, M=27). The
participants had a various background including software
engineers, project managers and attorneys. Half of the
participants used full-size keyboards primarily, while the
other half used compact keyboards more often.

To understand how the key events generated by gesturing
on the keyboard are different from those by regular usage,
our experiment involves two tasks: gesturing and typing.
For brevity, we use typing to refer to regular uses of
keyboard such as text entry using alphanumeric,
punctuation, and the space keys and key combinations
served as shortcuts, such as Ctrl+C/Ctrl+V for copy/paste,
and meta characters, such as delete, home/end keys, and
platform-dependent meta keys such as Macintosh’s
Command key. Each participant was asked to use both
types of keyboard for typing and gesturing. The order of the
keyboard use is counterbalanced. In each keyboard
condition, a participant first completed a typing task and
then a gesturing task.

Our typing task captures a typical text entry scenario.
Participants were asked to type a plain-text document in
English, and then follow the instructions to stylize the
document using various keyboard shortcuts (see Figure 5).
Participants were instructed to complete the typing task as
naturally as possible, with their natural typing speed and
shortcut habit, e.g., the preferred modifier location such as
left versus right “Shift” key and the landing order in a key
combination such as Ctrl+Alt+Del versus Alt+Ctrl+Del.

The typing task used a different document (with a similar
complexity) in each keyboard condition such that
participants do not enter the same document twice. Each
document had about 1000 characters that involved about 50
unique characters and 4 different formatting styles from a
set of bold, italic, hyperlink, center-aligned, underline and
right-aligned. We provide a cheat sheet of 14 shortcuts for
text editing and formatting to the participants.
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Figure 5: An example of our typing task.

In the gesturing task, participants were asked to perform
keyboard gestures, by following an on-screen stimulus that
shows one of the 16 gesture in Figure 3. Participants were
informed that the presentation of the gesture in the stimuli
is for the illustration purpose only, and they should perform
the gesture in the way they are most comfortable with,
regarding the size, speed, and location of the articulation on
the keyboard. The visual presentation of the gesture is
hidden once participants start gesturing to refrain them from
precisely replicating the gesture. Participants were allowed
to redo a trial if a mistake happens. The occurrence of the
16 target gestures is randomized with five repetitions for
each gesture in total.

Experimental Apparatus

A desktop computer with Intel 17 processor and 16G RAM
running Ubuntu 12.04 LTS operating system was used in
the study. A low-level key logger recorded all the keyboard
events throughout the study by reading from the
/dev/input/event® file, which Linux uses to expose input
events. The timestamps for the beginning of each trial and
gesture stimuli were recorded, which allow us to segment
and label the continuous keyboard event stream as chunks
of typing and gesturing data as well as corresponding
gesture categories in post processing.

Results

In total, we collected 1600 gesture samples (10 participants
x 16 gestures x 5 repetitions x 2 keyboards), from which we
excluded 6 samples that participants mistakenly entered
(clearly belong to other categories).

We conducted a paired two-sample T test on the task
completion time. On average, a typing task took 4162
seconds (SD=142 seconds) on the full-size keyboard, and
4607 seconds (SD=162 seconds) on the compact keyboard.
t(9)=3.0, p=0.015. In contrast, for gesturing, the compact
keyboard allowed a significantly faster gesture articulation
speed (M=768ms, SD=385ms) than the full-size keyboard



(M=979ms, SD=604ms), t(9)=2.941, p=0.016, after log-
transformation. The effect of keyboard conditions on the
number of key presses generated from each gesture is not
significant (p>0.05), with a mean of 10.2 keys, SD=4.2 (see
Figure 6), which roughly reflects the resolution of these
keyboards on sensing gestures.

150

number of gesture samples

-5 0 5 10 15 20 25
number of key presses

Figure 6: The distribution of the number of key press events
generated from each gesture.

Gesture Articulation Characteristics. To understand how
participants perform these gestures on the keyboard, we
analyzed the articulation characteristics of the gesture
samples. Although the four straight-line gestures have a
designated direction, we deliberately left the articulation
direction of the rest gestures undefined. For example, a
circle can be drawn in either a clockwise or a counter
clockwise fashion. This gives us an opportunity to observe
users’ preferences in performing these gestures on a
physical keyboard.

We model the profile of gesture articulation direction by
projecting each gesture stroke segment (a primitive finger
motion as sensed by the keyboard) of collected samples
onto three separate dimensions: horizontal, vertical and
angular. For example, in the horizontal dimension, a
movement can be left to right, right to left or no movement.

We found that gesturing tended to involve more left-to-right
(59.4%) than right-to-left motion (40.2%), more downward
(31.9%) than upward motion (21.3%) and more clockwise
(58.9%) than counter clockwise motion (34.3%). Because
all the participants in the study were right-handed, this
observation implied that the participants preferred to
contact the keycaps using the soft finger pad, instead using
the tip or back of the finger.

We observed that the participants adopted various
alternative articulation strategies in performing the gestures,
such as using the soft pad on the tip of the index finger for a
downward gesture, and using the back of the nail for an
upward gesture. Several participants used the non-gesturing
hand to hold the keyboard for stabilization while gesturing,
while others completed the gestures single-handedly.

These observations have several implications for designing
a keyboard gesture set. First, since participants tend to use
their finger pad in most cases, it is important to have
handedness in mind. For example, a left-to-right straight

gesture might be easy for right-handed users, but
uncomfortable for left-handed users. Second, it is advisable
to design for gestures without much curvature in the path,
since curvature would require the use of different parts of
the finger to perform the gesture, which could be less
comfortable. Third, some gestures might be easier to
perform with alternative articulation strategies, such as
using the thumb. It is useful to make users aware of these
alternative strategies for increased performance and comfort.

Subjective Feedback. We solicit the feedback from
participants to understand their perspective on the potential
use of gesturing on the keyboard. Overall, the participants
were excited about being able to issue gestures on a regular
keyboard. In particular, the participants suggested several
scenarios where GestKeyboard can be useful, such as
shortcuts for editing a document while in a rush, web
navigation using directional gestures (e.g., backward or
forward) and shortcuts for launching specific applications.
This feedback inspired us to develop two applications to
showcase GestKeyboard that we will discuss later.

All the participants preferred using the compact keyboard
over full-size keyboard. They felt that they were more
accurate, more comfortable, and less frustrated when
performing gestures on the compact keyboard, which is
consistent with the gesture completion time we discussed
earlier. Two participants felt that these keyboard gestures
will shoulder part of functionality of existing keyboard
shortcuts. In particular, keyboard gestures can be performed
in an eye-free fashion.

DETECTING GESTURE OCCURRENCES

Because we intend to allow users to switch between
gesturing and typing without explicit mode switching, we
need to detect the occurrence of a gesture from a continuous
stream of keyboard events. A naive strategy is to assume
every key event to be a potential start of a gesture. However,
this will require us to run gesture detection on every key
event that induces a constant overhead for event processing.
Instead, we view the event stream as a sequence of typing
and gesturing segments and between two consecutive
segments, the keyboard is idle, i.e., no key is pressed for a
certain interval. Ideally, the “heavy-lifting” of executing the
detection algorithm should only happen at the start of each
segment. Once the segment type is determined to be typing
or gesturing, the subsequent keyboard events can simply
carry the same segment type and be dispatched immediately
until another idle stage occurs. Therefore, our first task in
gesture occurrence detection is to segment the event stream.

Segmenting the Keyboard Event Stream

We segment a keyboard event stream based on if the idle
stage before a new event (signals the start of a segment) or
after the previous event (signals the end) is larger than a
certain interval. Based on the gesturing data collected from
our user study, on average, a gesture contains 3.7 idle
stages for the full-size keyboard, and 2.5 for the compact
keyboard. Based on the cumulative distribution of all idle



durations (see Figure 7), we use the duration value at the 99%
cut-off point on the empirical CDF as the timeout interval,
which turns out to be 420ms for the full-size keyboard and
120ms for the compact keyboard—only 1% of the idle
stages would lead to incorrect segmentation.

Empirical CDF of intra-gesture idle durations
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Figure 7: The empirical Cumulative Density Functions of
intra-gesture idle durations. Inset shows the 99% cutoff.

These acquired timeout intervals will be applied to a
continuous event stream at runtime for identifying the
starting point of a segment and invoking gesture occurrence
detection algorithms. For our offline analysis, we use these
timeout intervals to segment the typing data into chunks,
which are served as negative samples for training a gesture
occurrence detector. Applying the timeout intervals on
typing data results in 1,493 typing samples for the full-size
keyboard, and 2,327 samples for the compact keyboard.

Creating a Gesture Occurrence Classifier

With the typing and gesturing samples generated in the
previous steps, our gesture detection task reduces to a
binary classification problem. To create an efficient
classifier, we first look into various features that
characterize gesturing versus typing behaviors, including
both spatial and temporal aspects.

Keystroke Transition Distances

One obvious observation about gesturing on a keyboard is
that consecutive keystrokes (key presses) in the stream tend
to be close in distance, as the fingers slide across keys. In
contrast, two consecutive keystrokes in typing can be quite
distant on the keyboard depending on the target word or
shortcut being entered.

To capture this difference, we look at both the mean
distance My between consecutive keystrokes and its
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Figure 8: The ROC curves for mean keystroke distances
for gesturing on the compact keyboard.

variance for the K keystrokes that have been observed so far
in an unknown segment:

K
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where E; is the keycap name of the /™ keystroke on the
keyboard, and function D(E,; , E;) returns the segment-to-
segment shortest distance between two keycaps, based on
the specific keyboard geometry (see Figure 2). The variance,
Vi, 1s in turn calculated as:

K
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At this point, we can directly use these features to
participate in the process for training a gesturing-typing
classifier, based on our data. However, our typing data,
from the two typing tasks in the study, is hardly inclusive
for describing all possible keystroke transitions in day-to-
day typing behaviors. To address this issue, we used an
English language model (http://invokeit.wordpress.com/) to
synthesize the typing data that can better reflect keystroke
transitions in typing based on the follow procedure.

v, , K22 @)

We start with the N-gram-frequency pairs from the
language model, where the value of N ranges from 2 up to 5.
Then for each N-gram, we generated the corresponding
keystroke sequences. It is possible that an N-gram could be
entered in multiple ways, due to alternative modifier key
locations. For instance, either of the two “Shift” keys might
be used to enter uppercase letters such as “A” or “?”
character. Lacking empirical data on the probability of such
alternative keystroke sequences, we simply generated all
possible keystroke combinations for each N-gram with an
equal frequency, summing up to the N-gram frequency.
Finally, for each such synthesized keystroke sequence, we
computed the mean distance and variance for the first K
keys—K ranges from 2 to 5.

Note that the synthesized dataset is only useful for
capturing keystroke transitions and it lacks other properties
of the behavior that can only be observed in actual typing,
such as temporal aspects. As a result, we only use the
synthesized dataset to determine an optimal threshold for
My and Vi, to discretize these features. We also computed
My and Vi for K from 2 to 5 for each gesture sample from a
dataset that we collected for the 16 gestures in a pilot
study—that is separate from the user study reported earlier.

For each K, we want to determine an optimal threshold that
can best separate gesturing from typing based on My or V.
We achieve so through an ROC (Receiver Operating
Characteristic) analysis on My and Vy for gesturing and
synthesized typing (see Figure 8 for My for the compact
keyboard). Note that each typing My and Vi is weighted
based on the frequency of their originating N-gram in the
ROC analysis. Based on these thresholds, we discretize My
and Vi as Mj, and V; by assigning 1 if they are above their
threshold and 0 otherwise.



Adjacency Rates

Following on the keystroke transition distance feature
family, we look into a similar but different aspect—the
adjacency of two consecutive key presses. Note that two
keystrokes that are spatially close are not necessarily
adjacent. It is noticed that for gesturing, consecutive key
press events often happen for adjacent keys on the keyboard,
whereas it is not the case for typing. This spatial
characteristic is captured as the adjacency rate, Ak, for the
first K key press events in a sequence:

_li&

E, € Adj, i €[2.K]]

K-1 ’
where E; is the same as Equation 1, and Adj,; is the set of
keycaps adjacent to the keycap of the i-1™ key press event,
which is acquired from the keyboard geometry. The
numerator therefore denotes the number of pairs of
consecutive key press events that are also spatially adjacent
in the first K key presses. Note that a keycap should not be
considered adjacent to itself: we expect gesturing to have a
high adjacency rate and repeatedly pressing the same
keycap, which is rare in gesturing but common in typing,
should not increase the adjacency rate.

K22 3)
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Reuvisitation Rates

Typing frequently involves the repetition of the same key,
such as the space bar, or highly recurrent letters such as
letter “e” in “succeeded”. Gesturing, in contrast, rarely
involves revisiting previously pressed keys—only when a
gesture stroke intersects itself, e.g., the pigtail gesture. The
keycap revisitation rate, Ry, is defined as the number of
unique keycaps in the first K keystrokes of an unknown
segment over the total number of keystrokes, i.e., K.

Idle Rates

Lastly, we observed that the keyboard is hardly ever at an
idle state while gesturing, since the fingers would remain
pressed on some keys. However, the dominant pattern for
finger motion while typing is discrete striking of keycaps
that presses and releases a keycap in a short time interval.
This temporal characteristic is captured as the percentage of
time that the keyboard is idle—the idle rate, /x—during the
first K key presses.

Combining Individual Features

Consider features generated from the same featurization
process but for different K values a feature family. With the
five feature families, My, Vi, Ax, Rg, and Iy, with K
ranging from 2 to 5, a total of 20 features (4 lengths x 5
feature families) are computed for each sequence segment.
If a segment contains fewer than K key press events, the
feature F,, F € {M',V',A,R,I}, is assigned a default value
-1, to indicate a missing value.

Based on these features, we used the C4.5 decision tree of
WEKA to predict if an unknown segment is gesturing or
typing from the 2™ to the 5™ key press event since the start
of a sequence, a separate binary decision tree model is
trained for each, using all available features up to that event.

Because segmented typing samples are significantly more
than the gesture samples for each keyboard condition from
our user study, we balance the dataset by duplicating
gesture samples to roughly have the same size as the typing
samples. Based on this dataset, we tested each model with a
10-fold cross-validation. Figure 9 shows the mean accuracy
for each individual feature family and for the decision tree
combination of them.
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Figure 9: The detection accuracy for the full-size and the
compact keyboard for the number of key press events used.

The results clearly show that adjacency rates (4x) and mean
keystroke distances (M}, are the more discriminative than
other feature families. They require as few as two key press
events to achieve over 85% accuracy. Idle rates (Ix) also
consistently performed well. Combining all the five feature
families with the decision tree outperformed each
individual feature family with 94% accuracy based on only
2 key press events. By using 5 key press events and
combining all the feature families, the decision tree reaches
99.5% and 98.9% accuracy on the compact and full-sized
keyboard, respectively.

In terms of overall accuracy, using the full-size keyboard is
almost as accurate as using the compact keyboard, which
suggests the generalizability of the proposed features for
different types of keyboard. One interesting observation is
that, the type of keyboard has a more significant effect on
the accuracy of the idle rate feature family than on other
feature families. This phenomenon may be due to the large
spacing and vertical travel distance for the full-size
keyboards, which results in more idle stages even when
gesturing, making it less distinguishable from typing.

Making Time-Sensitive Decisions

In the online situation, as keyboard events come in, our
gesture detector should make a decision about if the user is
gesturing or typing as soon as possible and at the same time
minimize decision mistakes. The gesture detector is capable
of making a decision once it sees two key press events,
however, it needs to balance if it should make the decision
now or wait until more events are observed.

A decision tree can give a confidence value for its
classification result, and we need to determine an
appropriate confidence threshold for accepting or ignoring a
classification result. Although more events will lead to
better accuracy (see Figure 9), it is important for the
detector to resolve within a certain time limit. In addition,
since keyboard events come in at an unexpected interval,



which is not time-bounded, we need to impose a resolution
timeout in our decision process, i.e., if a resolution timeout
is reached, the sequence is force-resolved to typing. For a
given confidence threshold and resolution timeout, it is
necessary to understand the performance of the gesture
detector, with respect to elapsed time since the start of the
sequence (see Figure 10).
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Figure 10: The detection accuracy for different resolution
timeouts and confidence thresholds on the compact keyboard.

Each resolution timeout bounds the worst-case latency from
the user starting to type to seeing the actions permanently
committed to the system. We select 200ms resolution
timeout and the 0.96 confidence threshold for our online
detection process. This setting achieves 95% detection
accuracy on both types of keyboard—on average 1 in every
20 detections is wrong, either a gesture sequence is detected
as typing, or vice versa. Note that the 200ms latency only
occurs when detection is triggered—a timeout followed by
a keystroke, and could be reduced to tradeoff accuracy for
responsiveness of the system.

RECOGNIZING GESTURES

Upon identifying a gesturing segment from the keyboard
event stream, we need to recognize the gesture. We first
transform the keyboard events of the segment to a sequence
of timed 2D coordinates and then classify the sequence with
a template-based recognizer adapted from previous work.

If we consider each keycap as a binary sensor with two
possible states: pressed or released, a keyboard event
essentially describes a state change of one of these binary
sensors. A key press or release event triggers the transition
from one state to another, and a key repeat event has no
change in the pressed state. In turn, the entire keyboard can
be viewed as a low-resolution sensor array. Each individual
sensor could be of large and irregular shapes. We use the
keyboard geometry—the bounds of each keycap relative to
the top-left corner of the keyboard—to transform a
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Figure 11: The recognition accuracy for each keyboard.

keyboard event stream into a timed 2D trajectory, i.e., an
approximation of the finger's trajectory.

We maintain a set of currently pressed keys to reflect the
current “footprint” of the user fingers, which is initially
empty as we always start from an idle stage. Whenever a
press or release event occurs, we add the key to the set or
remove it from the set. For each update, we calculate the
centroid of the footprint, C, as the following:

oo 2P (4)
2.
where p; is the bounding box center of the i keycap in the
footprint key set, and a; is its bounding box size. The
centroid along the timestamp of the key event is appended
to a 2D trajectory (see Figure 1).

We employ Protractor, a template-based gesture recognizer
[9] for recognizing an acquired 2D trajectory, which
matches a 2D trajectory against a set of templates.
Protractor allows a developer to configure how sensitive the
recognizer should be to orientation variation of a gesture.
Because our gesture set involves gestures that would be
indistinguishable from each other without considering
orientation, e.g., four straight lines or gesture “M” versus
“W”, we set Protractor to be orientation sensitive.

Although several gestures in our target set are irreversible
such as straight lines, many of our gestures are reversible,
e.g., gesture “M” can be drawn from left to right or right to
left. We could ask participants to perform additional
gestures to capture both articulation directions. However,
this would lengthen the study time and increase user fatigue
and frustration. Instead, for each sample of a reversible
gesture, we synthetically add its reverted trajectory to the
template set. This allows the recognizer to support both
types of gestures simultaneously without needing additional
data. To find out the recognition accuracy of these keyboard
gestures, we conducted a cross-validation splitting on
participants—picking one participant’s data for training and
the rest 9’s for testing and repeating the process for each
participant. For each round, we varied the number of
templates (training samples) from 1 to 5 and the number of
target gesture categories (classes) from 2 to 16 (see Figure
11). Gesturing on the compact keyboard seems to be more
accurate (M=95.3%, SD=2.5%) than on the full-size
keyboard (M=94.5%, SD=2.6%), t(df=74)=9.260, p<0.005.
For the most difficult classification condition (16 target
gestures and 1 template gesture), the accuracy is 89.3%.
When 5 templates per class is used to classify the 16
gestures, the accuracy is significantly increased to 92.2%.
These results indicated that it is feasible to sense gestures
on a physical keyboard.

EXAMPLE APPLICATIONS

We developed two applications using GestKeyboard: one
allows a user to invoke applications anytime and the other
allows a user to edit text, using GestKeyboard gestures.



System-Wide Deployment: GestRun

We developed an application launcher, named “GestRun”
(see Figure 12), as a system-level service. Without going to
a specific application (or the Desktop screen), a user can
launch an application anytime, by performing a keyboard
gesture. We leveraged shape mnemonics to ease learning of
the gestures, such as the “circle” gesture for the Chrome
browser, the “rectangle” gesture for terminal and gesture
“V” for the Vim editor. GestRun provides a system-wide
access to common applications, without consuming screen
estate or requiring long click-throughs or search to find a
specific application.

Figure 12: The GestRun application launcher. The recognized
gesture is shown above the corresponding application for the
illustration purpose.

Application Specific Deployment: GestEdit

We also used GestKeyboard to enhance text editing. We
developed GestEdit that allows a user to use keyboard
gestures for common styling tasks (see Figure 13), such as
vertical swipes for super or subscripting, and angle gestures
for font style manipulation. Many of these styling
operations have no shortcuts defined in existing text editors.

Figure 13: The gesture commands used in GestEdit.

In case a user is unsure which gesture to use, the user can
pause the articulation by holding down the current keys.
After a short dwell time (e.g., 500ms), an in-place popup
menu is shown to present the gesture set and associated
functions. At this point, the user can continue sliding her
fingers to finish the target gesture. Alternatively, the user
can cancel the ongoing gesture by pressing a key that is not
adjacent to the current footprint,

GestEdit also leverages in which area of the keyboard a
gesture is performed and invokes different functions for

each area, e.g., the straight-line gestures map to alignment
functions if they are performed on the numeric keypad.

LIMITATIONS AND FUTURE WORK

GestKeyboard allows a user to perform a set of useful
gestures on a regular physical keyboard that is equipped on
every desktop and laptop computer. However, the ghosting
and masking effect with most existing keyboard hardware
prevents us from exploring gestures that require multiple
simultaneous touch points, such as multi-touch or shape
gestures [10]. In particular, shape gestures such as rolling
the palm or fist across the keyboard can be easier to
perform than stroke gestures that involve lateral friction.

Before gesture detection is resolved, there are two options
to process the key events that have occurred for an
unknown segment. GestKeyboard can hold on these events
until the decision is made, and then dispatch them as well as
the following events to either typing or gesturing, which
continues until another segmentation timeout occurs and
gesture detection is invoked again. This would incur a
maximum of 200ms latency in interaction. Alternatively,
GestKeyboard can dispatch each event right away but at the
same time inform the application GestKeyboard has not yet
made a decision. This removes the latency but shoulder the
effort for handling uncertainty to application developers.

GestKeyboard itself is currently implemented as an
application based on Linux. It is more appropriate for it to
run at the core of keyboard event processing in the
operating system, to take full control of the keyboard status.
It is also worthwhile to implement GestKeyboard in a web
environment, e.g., as a browser plugin so that it becomes
instantaneously available to user on various computing
devices that have a physical keyboard.

One important component in GestKeyboard is the keyboard
geometry about the bounds of each key on the keyboard,
which is often keyboard-specific. To automatically extract
the geometry from a keyboard, we can potentially use
computer vision and OCR to recognize each keycap from a
photo of the keyboard.

Aside from the technical aspect, GestKeyboard’s
practicality should be further examined in the context of
existing shortcut mechanisms, particularly in comparison
with hotkeys. Keyboard gestures that are enabled by
GestKeyboard have several potential advantages, including
eye-free interactions, easy to learn and flexible to perform.
Performing these gestures does not require the user to adapt
for the specific keyboard layout or semantic designations of
the modifier keys, which tend to significantly impact how a
user performs hotkeys. Future research on these
characteristics of keyboard gesture would provide direct
implications on the usage scenario for GestKeyboard and
further reveal the advantage and shortcomings of keyboard
gestures.

RELATED WORK
Using physical key presses to sense trajectories has briefly



been demonstrated previously. Jannotti [S] presented a
scheme to simulate the shape of characters on the numeric
keypad for text entry on a reduced keypad such as a TV
remote. EdgeWrite uses four keys (arranged as a square) to
capture spatial sequences for text entry [12]. All this prior
work inspired us to explore gesturing on a physical
keyboard in depth.

Extensive work has been conducted on gesturing on a soft
keyboard for text entry based on a touchscreen or a stylus-
enabled surface [14]. Although relevant, our work is vastly
different because we focus on a different sensing device—
an ordinary physical keyboard, which raises different
challenges. For example, separating gesturing and typing on
a touchscreen keyboard would be trivial because a
touchscreen provides a much higher resolution than a
physical keyboard does.

Traditional computing devices, such as a desktop or laptop
computer, enabled limited gesture behaviors. For example,
Apple MacBook allows a user to bring up Expose
(windows overview) through a three-finger swipe gesture
on the trackpad. However, stroke gestures are generally not
supported on traditional computing devices that lack a
dedicated gesturing device.

Previously, various efforts have been devoted to
augmenting a keyboard with additional hardware [1][2][3].
In particular, the Pressure-Sensing Keyboard [3] is
manufactured with additional press sensors in imprinting
but its spatial resolution is unchanged. Touch Display
Keyboard [2] enable flexible ways of using the keyboard,
such as reassigning the keyboard functions or changing
keyboard layout, by augmenting the keyboard with
capacitive touch sensors and a projector instrumented in the
environment. Actuated Keys [1] augments existing hotkey
behaviors by mechanically raising keycaps when a modifier
key is pressed. All this work did not focus on gesture
articulation on the keyboard. In contrast, we aimed at
enabling stroke gestures on existing unmodified keyboards.

CONCLUSION

We present GestKeyboard, a novel technique for gesture-
based interaction on an existing physical keyboard, without
any additional hardware or modification. It does not
interfere with existing keyboard usage and allows a user to
switch between the regular usage—typing or performing
hotkeys—and gesturing in a modeless way. Based on a user
study with 10 participants, we explored various
characteristics about gesture articulation on a physical
keyboard. We contributed a set of algorithms for detecting
gesture occurrences. In particular, we designed features that
can effectively separate gesturing from typing by using
typing behaviors synthesized from a language model.
GestKeyboard is able to detect gesturing from regular
typing, with 95% accuracy with a maximum latency of
200ms. Based on the experiment as well as two applications
using GestKeyboard, we found gesturing on a regular
physical keyboard is useful and feasible.
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